Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Although there are many stimulus-responsive polymers, poly(N-isopropyl acrylamide) (pNIPAM) is of special interest due to the phase change it undergoes in a physiologically relevant temperature range that leads to the release of cells and proteins. The nondestructive release of cells opens up a wide range of applications, including the use of pNIPAM for cell sheet and tissue engineering. In this work, pNIPAM surfaces were generated that can be distinguished from the extracellular matrix. A polymerization technique was adapted that was previously used by Mendez, and the existing protocol was optimized for the culture of mammalian cells. The resulting surfaces were characterized with X-ray photoelectron spectroscopy and goniometry. The developed pNIPAM surfaces were further adapted by incorporation of 5-acrylamidofluorescein to generate fluorescent pNIPAM-coated surfaces. Both types of surfaces (fluorescent and nonfluorescent) sustained cellular attachment and produced cellular detachment of ∼90%, and are therefore suitable for the generation of cell sheets for engineered tissues and other purposes. These surfaces will be useful tools for experiments investigating cellular detachment from pNIPAM and the pNIPAM/cell interface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642485 | PMC |
http://dx.doi.org/10.1116/1.4894530 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!