ADAR1 is required for differentiation and neural induction by regulating microRNA processing in a catalytically independent manner.

Cell Res

1] State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China [2] School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China.

Published: April 2015

Adenosine deaminases acting on RNA (ADARs) are involved in adenosine-to-inosine RNA editing and are implicated in development and diseases. Here we observed that ADAR1 deficiency in human embryonic stem cells (hESCs) significantly affected hESC differentiation and neural induction with widespread changes in mRNA and miRNA expression, including upregulation of self-renewal-related miRNAs, such as miR302s. Global editing analyses revealed that ADAR1 editing activity contributes little to the altered miRNA/mRNA expression in ADAR1-deficient hESCs upon neural induction. Genome-wide iCLIP studies identified that ADAR1 binds directly to pri-miRNAs to interfere with miRNA processing by acting as an RNA-binding protein. Importantly, aberrant expression of miRNAs and phenotypes observed in ADAR1-depleted hESCs upon neural differentiation could be reversed by an enzymatically inactive ADAR1 mutant, but not by the RNA-binding-null ADAR1 mutant. These findings reveal that ADAR1, but not its editing activity, is critical for hESC differentiation and neural induction by regulating miRNA biogenesis via direct RNA interaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387555PMC
http://dx.doi.org/10.1038/cr.2015.24DOI Listing

Publication Analysis

Top Keywords

neural induction
16
differentiation neural
12
induction regulating
8
hesc differentiation
8
adar1 editing
8
editing activity
8
hescs neural
8
adar1 mutant
8
adar1
7
neural
5

Similar Publications

Background: Up to 84% of patients with Alzheimer's Disease (AD) have vascular damage which precedes cognitive decline. Inflammation induces changes in blood-brain-barrier (BBB) integrity, though the link between induction of inflammation and AD is unclear. IL1β, a cytokine upregulated in patients with AD and in mouse models of the disease, is released and interacts with IL1R1 and its obligate co-receptor, IL1RAP, to induce downstream signaling.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Brown University, Providence, RI, USA.

Background: Chitinase-3-like protein 1 (CHI3L1, or YKL-40) is an important regulator of immunity and, in the brain, is primarily secreted by activated astrocytes and heralds a neurotoxic inflammatory state. While it has been well known as a high-profile biomarker for Alzheimer's disease (AD) and inflammatory brain conditions (e.g.

View Article and Find Full Text PDF

Background: Millions of people suffer from traumatic brain injury (TBI) annually and many subsequently develop AD-like characteristics, but the processes occurring in the brain and the reasons for the acquisition of AD-like dementia are unknown. TBI is the leading cause of mortality in young adults and causes a huge socioeconomic burden. Improving outcomes in these patients would be a significant public health benefit.

View Article and Find Full Text PDF

Background: The peripheral nervous system (PNS) exhibits remarkable regenerative capability after injury. PNS regeneration relies on neurons themselves as well as a variety of other cell types, including Schwann cells, immune cells, and non-neuronal cells.

Objectives: This paper focuses on summarizing the critical roles of immune cells (SCs) in the injury and repair processes of the PNS.

View Article and Find Full Text PDF

Inhibition of Bruton's tyrosine kinase restricts neuroinflammation following intracerebral hemorrhage.

Theranostics

January 2025

Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China.

Intracerebral hemorrhage (ICH) is a devastating form of stroke with a lack of effective treatments. Following disease onset, ICH activates microglia and recruits peripheral leukocytes into the perihematomal region to amplify neural injury. Bruton's tyrosine kinase (BTK) controls the proliferation and survival of various myeloid cells and lymphocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!