Objective: To determine if baseline 3-dimensional (3-D) biomechanical gait patterns differed between those patients with moderate knee osteoarthritis (OA) who progressed to total knee arthroplasty (TKA) and those that did not, and whether these differences had predictive value.
Methods: Fifty-four patients with knee OA had ground reaction forces and segment motions collected during gait. 3-D hip, knee, and ankle angles and moments were calculated over the gait cycle. Amplitude and temporal waveform characteristics were determined using principal component analysis. At followup 5-8 years later, 26 patients reported undergoing TKA. Unpaired t-tests were performed on baseline demographic and waveform characteristics between TKA and no-TKA groups. Receiver operating curve analysis, stepwise discriminate analysis, and logistic regression analysis determined the combination of features that best classified TKA and no-TKA groups and their predictive ability.
Results: Baseline demographic, symptomatic, and radiographic variables were similar, but 7 gait variables differed (P < 0.05) between groups. A multivariate model including overall knee adduction moment magnitude, knee flexion/extension moment difference, and stance-dorsiflexion moment had a 74% correct classification rate, with no overtraining based on cross-validation. A 1-unit increase in model score increased by 6-fold the odds of progression to TKA.
Conclusion: In addition to the link between higher overall knee adduction magnitude and future TKA, an outcome of clear clinical importance, novel findings include altered sagittal plane moment patterns indicative of reduced ability to unload the joint during midstance. This combination of dynamic biomechanical factors had a 6-fold increased odds of future TKA; adding baseline demographic and clinical factors did not improve the model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654242 | PMC |
http://dx.doi.org/10.1002/acr.22564 | DOI Listing |
Sci Rep
January 2025
Department of Rehabilitation, University Hospital Olomouc, Olomouc, Czech Republic.
Motor imagery (MI) is a mental simulation of a movement without its actual execution. Our study aimed to assess how MI of two modalities of gait (normal gait and much more posturally challenging slackline gait) affects muscle activity and lower body kinematics. Electromyography (biceps femoris, gastrocnemius medialis, rectus femoris and tibialis anterior muscles) as well as acceleration and angular velocity (shank, thigh and pelvis segments) data were collected in three tasks for both MI modalities of gait (rest, gait imagery before and after the real execution of gait) in quiet bipedal stance in 26 healthy young adults.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurology, School of Medicine, Dong-A University, Seo-gu, Busan, Republic of Korea.
Early detection of Parkinson's disease (PD) and accurate assessment of disease progression are critical for optimizing treatment and rehabilitation. However, there is no consensus on how to effectively detect early-stage PD and classify motor symptom severity using gait analysis. This study evaluated the accuracy of machine learning models in classifying early and moderate-stages of PD based on spatiotemporal gait features at different walking speeds.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
Chronic allodynia stemming from peripheral stump neuromas can persist for extended periods, significantly compromising patients' quality of life. Conventional managements for nerve stumps have demonstrated limited effectiveness in ensuring their orderly termination. In this study, we present a spatially confined conduit strategy, designed to enhance the self-organization of regenerating nerves after truncation.
View Article and Find Full Text PDFPLoS One
January 2025
Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, DIAKOVERE Annastift, Hannover Medical School, Hannover, Germany.
Prosthetic gait differs considerably from the unimpaired gait. Studying alterations in the gait patterns could help to understand different adaptation mechanisms adopted by these populations. This study investigated the effects of induced stiff-knee gait (SKG) on prosthetic and healthy gait patterns and the capabilities of predictive simulation.
View Article and Find Full Text PDFClin Orthop Relat Res
December 2024
Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA.
Background: Patients with transfemoral amputation experience socket-related problems and musculoskeletal overuse injuries, both of which are exacerbated by asymmetric joint loading and alignment. Bone-anchored limbs are a promising alternative to treat chronic socket-related problems by directly attaching the prosthesis to the residual limb through an osseointegrated implant; however, it remains unknown how changes in alignment facilitated through a bone-anchored limb relate to loading asymmetry.
Questions/purposes: What is the association between femur-pelvis alignment and hip loading asymmetry during walking before and 12 months after transfemoral bone-anchored limb implantation?
Methods: Between 2019 and 2022, we performed 66 bone-anchored limb implantation surgeries on 63 individuals with chronic socket-related problems.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!