A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PNImodeler: web server for inferring protein-binding nucleotides from sequence data. | LitMetric

Background: Interactions between DNA and proteins are essential to many biological processes such as transcriptional regulation and DNA replication. With the increased availability of structures of protein-DNA complexes, several computational studies have been conducted to predict DNA binding sites in proteins. However, little attempt has been made to predict protein binding sites in DNA.

Results: From an extensive analysis of protein-DNA complexes, we identified powerful features of DNA and protein sequences which can be used in predicting protein binding sites in DNA sequences. We developed two support vector machine (SVM) models that predict protein binding nucleotides from DNA and/or protein sequences. One SVM model that used DNA sequence data alone achieved a sensitivity of 73.4%, a specificity of 64.8%, an accuracy of 68.9% and a correlation coefficient of 0.382 with a test dataset that was not used in training. Another SVM model that used both DNA and protein sequences achieved a sensitivity of 67.6%, a specificity of 74.3%, an accuracy of 71.4% and a correlation coefficient of 0.418.

Conclusions: Predicting binding sites in double-stranded DNAs is a more difficult task than predicting binding sites in single-stranded molecules. Our study showed that protein binding sites in double-stranded DNA molecules can be predicted with a comparable accuracy as those in single-stranded molecules. Our study also demonstrated that using both DNA and protein sequences resulted in a better prediction performance than using DNA sequence data alone. The SVM models and datasets constructed in this study are available at http://bclab.inha.ac.kr/pnimodeler.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331809PMC
http://dx.doi.org/10.1186/1471-2164-16-S3-S6DOI Listing

Publication Analysis

Top Keywords

binding sites
24
protein binding
16
protein sequences
16
sequence data
12
dna protein
12
dna
11
protein-dna complexes
8
protein
8
predict protein
8
svm models
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!