Contextual effects on preattentive processing of sound motion as revealed by spatial MMN.

Int J Psychophysiol

I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, Nab. Makarova 6, St.-Petersburg 199034, Russia. Electronic address:

Published: April 2015

The magnitude of spatial distance between sound stimuli is critically important for their preattentive discrimination, yet the effect of stimulus context on auditory motion processing is not clear. This study investigated the effects of acoustical change and stimulus context on preattentive spatial change detection. Auditory event-related potentials (ERPs) were recorded for stationary midline noises and two patterns of sound motion produced by linear or abrupt changes of interaural time differences. Each of the three types of stimuli was used as standard or deviant in different blocks. Context effects on mismatch negativity (MMN) elicited by stationary and moving sound stimuli were investigated by reversing the role of standard and deviant stimuli, while the acoustical stimulus parameters were kept the same. That is, MMN amplitudes were calculated by subtracting ERPs to identical stimuli presented as standard in one block and deviant in another block. In contrast, effects of acoustical change on MMN amplitudes were calculated by subtracting ERPs of standards and deviants presented within the same block. Preattentive discrimination of moving and stationary sounds indexed by MMN was strongly dependent on the stimulus context. Higher MMNs were produced in oddball configurations where deviance represented increments of the sound velocity, as compared to configurations with velocity decrements. The effect of standard-deviant reversal was more pronounced with the abrupt sound displacement than with gradual sound motion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpsycho.2015.02.021DOI Listing

Publication Analysis

Top Keywords

sound motion
12
stimulus context
12
sound stimuli
8
preattentive discrimination
8
effects acoustical
8
acoustical change
8
standard deviant
8
mmn amplitudes
8
amplitudes calculated
8
calculated subtracting
8

Similar Publications

Beta oscillations predict the envelope sharpness in a rhythmic beat sequence.

Sci Rep

January 2025

RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, Oslo, 0373, Norway.

Periodic sensory inputs entrain oscillatory brain activity, reflecting a neural mechanism that might be fundamental to temporal prediction and perception. Most environmental rhythms and patterns in human behavior, such as walking, dancing, and speech do not, however, display strict isochrony but are instead quasi-periodic. Research has shown that neural tracking of speech is driven by modulations of the amplitude envelope, especially via sharp acoustic edges, which serve as prominent temporal landmarks.

View Article and Find Full Text PDF

: This study explores how thoracic orientation affects lung pressure and injury outcomes from shock waves, building on earlier research that suggested human posture impacts injury severity. : A layered finite element model of the chest was constructed based on the Chinese Visual Human Dataset (CVH), including the rib and intercostal muscle layers. The dynamic response of the chest under 12 different angle-oriented shock waves under incident pressures of 200 kPa and 500 kPa was calculated.

View Article and Find Full Text PDF

Hypothesis: Proximal humerus fractures present a treatment challenge due to varied fracture configurations and a lack of consensus on optimal management. Locking plate designs offer promising solutions, yet technical guidelines for successful outcomes remain elusive. Complications are common, with fixation-related failures often attributed to varus collapse.

View Article and Find Full Text PDF

Narrow elliptical motion at the outer hair cell-Deiters' cell junction explains disparate features of uniaxial displacement measurements.

Hear Res

January 2025

Columbia University Irving Medical Center, Department of Otolaryngology, Head and Neck Surgery, 180 Fort Washington Ave, New York, 10032, NY, USA; Columbia University, Department of Biomedical Engineering, 1210 Amsterdam Ave, New York, 10027, NY, USA.

Sound-evoked displacement responses at the outer hair cell-Deiters' cell junction (OHC-DC) are of significant interest in cochlear mechanics, as OHCs are believed to be in part responsible for active tuning enhancement and amplification. Motion in the cochlea is three-dimensional, and the architecture of the organ of Corti complex (OCC) suggests the presence and mechanical importance of all three components of motion. Optical coherence tomography (OCT) displacement measurements of OHC-DC motion from different experimental preparations often show disparate results, potentially due to OCT measuring only the motion component along the beam axis.

View Article and Find Full Text PDF

In this contribution, we apply our newly developed ball-milling platform, which combines Raman spectroscopy and thermal (IR) imaging, as well as acoustic and high-speed optical video recordings, to the synthesis and transformation of citric acid-isonicotinamide (1:2) cocrystal polymorphs in transparent PMMA jars. Particularly, we demonstrate how Raman, temperature, acoustic, and video data are complementary and enable detection and connection of chemical and physical events happening during ball-milling in a time-resolved manner. Importantly, we show that the formation of the three cocrystal polymorphs can be detected through acoustic analyses solely.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!