Valproic acid enhances neuronal differentiation of sympathoadrenal progenitor cells.

Mol Psychiatry

1] Division of Molecular Endocrinology, Medical Clinic III, Carl Gustav Carus University Clinic, Technische Universität Dresden, Dresden, Germany [2] Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany.

Published: August 2015

The antiepileptic drug valproic acid (VPA) has been shown to influence the neural differentiation and neurite outgrowth of neural stem cells. Sympathoadrenal progenitor cells share properties with neural stem cells and are considered a potential cell source in the treatment of neurodegenerative diseases. The present study therefore aims at modulating the neural differentiation potential of these cells by treatment with the histone deacetylase inhibitor VPA. We studied the epigenetic effects of VPA in two culture conditions: suspension conditions aimed to expand adrenomedullary sympathoadrenal progenitors within free-floating chromospheres and adherent cell cultures optimized to derive neurons. Treatment of chromospheres with VPA may launch neuronal differentiation mechanisms and improve their neurogenic potential upon transplantation. However, also transplantation of differentiated functional neurons could be beneficial. Treating chromospheres for 7 days with clinically relevant concentrations of VPA (2 mm) revealed a decrease of neural progenitor markers Nestin, Notch2 and Sox10. Furthermore, VPA initiated catecholaminergic neuronal differentiation indicated by upregulation of the neuronal marker β-III-tubulin, the dopaminergic transcription factor Pitx3 and the catecholaminergic enzymes TH and GTPCH. In adherent neural differentiation conditions, VPA treatment improved the differentiation of sympathoadrenal progenitor cells into catecholaminergic neurons with significantly elevated levels of nor- and epinephrine. In conclusion, similar to neural stem cells, VPA launches differentiation mechanisms in sympathoadrenal progenitor cells that result in increased generation of functional neurons. Thus, data from this study will be relevant to the potential use of chromaffin progenitors in transplantation therapies of neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1038/mp.2015.3DOI Listing

Publication Analysis

Top Keywords

sympathoadrenal progenitor
16
progenitor cells
16
neuronal differentiation
12
neural differentiation
12
neural stem
12
stem cells
12
valproic acid
8
differentiation
8
differentiation sympathoadrenal
8
cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!