I.I. Mechnikov's hypothesis that the key to prolongation of life lies in the introduction of useful microflora to the gut was not proved. Any microflora needs nutrition and perceives the human body only as a nutrient substrate. Destruction of the basement membranes, that delimit the contacting with aggressive microbiological environment epithelium from the deeper parts of the body, can lead to chronic inflammatory diseases and aging of the skin as a consequence of the invasion of microorganisms. At the ultrastructural level it has been shown by the example of prostatitis and skin aging changes. Coupled with the penetration of germs flow of immune cells may cause autoimmune reactions due to abrupt changes in the molecular design of the intermembrane transport. Thus, the physiological process of macroorganism aging can be viewed as a consequence of its microbiological destruction.

Download full-text PDF

Source

Publication Analysis

Top Keywords

["microbiological aging"
4
aging" mechnikov
4
mechnikov interpret
4
interpret ideas
4
ideas today?]
4
today?] mechnikov's
4
mechnikov's hypothesis
4
hypothesis key
4
key prolongation
4
prolongation life
4

Similar Publications

Evaluation of transcriptomic changes after photobiomodulation in spinal cord injury.

Sci Rep

January 2025

Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined.

View Article and Find Full Text PDF

Integrative deep immune profiling of the elderly reveals systems-level signatures of aging, sex, smoking, and clinical traits.

EBioMedicine

January 2025

Institute of Immunology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany; German Centre for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany. Electronic address:

Background: Aging increases disease susceptibility and reduces vaccine responsiveness, highlighting the need to better understand the aging immune system and its clinical associations. Studying the human immune system, however, remains challenging due to its complexity and significant inter-individual variability.

Methods: We conducted an immune profiling study of 550 elderly participants (≥60 years) and 100 young controls (20-40 years) from the RESIST Senior Individuals (SI) cohort.

View Article and Find Full Text PDF

Protocol for identifying Dicer as dsRNA binding and cleaving reagent in response to transfected dsRNA.

STAR Protoc

January 2025

CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. Electronic address:

Mammalian Dicer has been proved to be functional on double-stranded RNAs (dsRNAs) and involved in antiviral immunity or immune regulation. Here, we present a protocol for identifying Dicer as a dsRNA binding and cleaving factor to transfected dsRNA in cell lines, based on small RNA sequencing (RNA-seq) and dsRNA-immunoprecipitation (dsRNA-IP). We detail both experimental processes and analysis on small RNA-seq data.

View Article and Find Full Text PDF

Introduction: Osteoarthritis (OA) is the most prevalent form of arthritis and affects over 528 million people worldwide. Degenerative joint disease involves cartilage degradation, subchondral bone remodeling, and synovial inflammation, leading to chronic pain, stiffness, and impaired joint function. Initially regarded as a "wear and tear" condition associated with aging and mechanical stress, OA is now recognized as a multifaceted disease influenced by systemic factors such as metabolic syndrome, obesity, and chronic low-grade inflammation.

View Article and Find Full Text PDF

The Dps Protein Protects DNA in the Form of the Trimer.

Int J Mol Sci

January 2025

Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia.

The Dps protein is the major DNA-binding protein of prokaryotes, which protects DNA during starvation by forming a crystalline complex. The structure of such an intracellular DNA-Dps complex is still unknown. However, the phenomenon of a decrease in the size of the Dps protein from 90 Å to 69-75 Å during the formation of a complex with DNA has been repeatedly observed, and no explanation has been given.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!