Using absorption and fluorescence spectroscopy methods we obtained the results demonstrating alterations in spectral characteristics in supramolecular system composed of gold nanorods (AuNR) (10 x 38 nm) and complexes of human serum albumin (HSA) and 5, 10, 15, 20-tetraphenylporphyrin (TPP). TPP fluorescence (max = 636 and 658 nm) was found to enhance. The dependence of fluorescence enhancing in time was of nonlinear nature. Maximum TPP fluorescence enhancing value was as high as 16% and it was achieved in 7 min after mixing the components. Simultaneously with TPP fluorescence enhancing we observed a decrease in HAS own fluorescence (max = 340 nm) and optical density reduction in maximum of longitudinal localized plasmon band of AuNR (max = 752 nm).

Download full-text PDF

Source

Publication Analysis

Top Keywords

tpp fluorescence
12
fluorescence enhancing
12
human serum
8
serum albumin
8
fluorescence max
8
fluorescence
6
[fluorescense enhancing
4
enhancing 20-tetraphenylporphyrin
4
20-tetraphenylporphyrin complex
4
complex human
4

Similar Publications

A series of 2-pyridone[α]-fused BOPHYs - were prepared via a two-step procedure involving the preparation of enamine, followed by an intramolecular heterocyclization reaction. In addition to being fully conjugated with the BOPHY core pyridone fragment, BOPHYs and have a pyridine group connected to the BOPHY core via one- or two -CH- groups. New BOPHYs were characterized by spectroscopy as well as X-ray diffraction.

View Article and Find Full Text PDF

Herein, a water-soluble, ultrabright, near-infrared (NIR) fluorescent, mechanically interlocked molecules (MIMs)-peptide bioconjugate is designed with dual targeting capabilities. Cancer cell surface overexpressed αβ integrin targeting two RGDS tetrapeptide residues is tethered at the macrocycle of MIMs-peptide bioconjugate via Cu(I)-catalyzed click chemistry on the Wang resin, and mitochondria targeting lipophilic cationic TPP functionality is conjugated at the axle dye. Living carcinoma cell selective active targeting, subsequently cell penetration, mitochondrial imaging, including the ultrastructure of cristae, and real-time tracking of malignant mitochondria by MIMs-peptide bioconjugate (RGDS)-Mito-MIMs-TPP are established by stimulated emission depletion (STED) super-resolved fluorescence microscopy.

View Article and Find Full Text PDF

Mitochondria-Targeted DNA-Based Nanoprobe for In Situ Monitoring of the Activity of the mtDNA Repair Enzyme and Evaluating Tumor Radiosensitivity.

Anal Chem

January 2025

New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.

Article Synopsis
  • Evaluating tumor radiosensitivity is crucial for predicting treatment success, tailoring plans, and reducing side effects, with mtDNA repair activity serving as a key indicator.
  • A novel DNA-based nanoprobe (TPP-Apt-tFNA) is developed to monitor mtDNA repair enzyme activity specifically in tumor cells by targeting mitochondria, enhancing selectivity and accuracy.
  • The research highlights that tumors with high mtDNA repair activity are less sensitive to radiation, indicating potential challenges in radiotherapy outcomes, thus emphasizing the need for new imaging tools in cancer treatment.
View Article and Find Full Text PDF

Multifunctional porphyrin-substituted phenylalanine-phenylalanine nanoparticles for diagnostic and therapeutic applications in Alzheimer's disease.

Bioorg Chem

January 2025

Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, China. Electronic address:

β-Amyloid (Aβ) peptides are believed as the diagnostic biomarkers and therapeutic targets of Alzheimer's disease (AD). Their complexes with copper ions can catalyze the generation of reactive oxygen species (ROS) to further promote neuronal death. Herein, we suggested that porphyrin-substituted phenylalanine-phenylalanine nanoparticles (TPP-FF NPs) could inhibit the aggregation of Aβ monomers, disassemble the fibrillar Aβ aggregates under light illumination, and depressing the Cu-induced generation of ROS.

View Article and Find Full Text PDF

A series of seven-coordinated monoporphyrinate rare-earth(III) complexes featuring a novel tripodal tin-chelated trisphosphineoxide scorpionate ligand with the general formula [(TPP)Ln(PPhO)Sn] (Ln = Y, La, Dy, Er, Ho, Yb; TPP = 5,10,15,20-tetraphenylporphyrinate) were synthesized by reactions of the potassium tripodal scorpionate ligand [Sn(PPhO)K] with porphyrinate rare-earth metal chlorides [(TPP)LnCl(dme)] (Ln = Y, Dy, Er, Ho, Yb) or porphyrinate lanthanum borohydride [(TPP)LaBH(thf)]. The complexes were characterized by single-crystal X-ray diffraction, NMR spectroscopy, and ion mobility mass spectrometry. All complexes emit weak red TPP-based fluorescence, accompanied by near-infrared emission of Er, Ho (rather weak), and Yb (relatively intense with a quantum yield of 1% in dichloromethane solution) of the corresponding complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!