In spite of remarkable advances in the knowledge on Trypanosoma cruzi biology, no medications to treat Chagas disease have been approved in the last 40 years and almost 8 million people remain infected. Since the public sector and non-profit organizations play a significant role in the research efforts on Chagas disease, it is important to implement research strategies that promote translation of basic research into the clinical practice. Recent international public-private initiatives address the potential of drug repositioning (i.e. finding second or further medical uses for known-medications) which can substantially improve the success at clinical trials and the innovation in the pharmaceutical field. In this work, we present the computer-aided identification of approved drugs clofazimine, benidipine and saquinavir as potential trypanocidal compounds and test their effects at biochemical as much as cellular level on different parasite stages. According to the obtained results, we discuss biopharmaceutical, toxicological and physiopathological criteria applied to decide to move clofazimine and benidipine into preclinical phase, in an acute model of infection. The article illustrates the potential of computer-guided drug repositioning to integrate and optimize drug discovery and preclinical development; it also proposes rational rules to select which among repositioned candidates should advance to investigational drug status and offers a new insight on clofazimine and benidipine as candidate treatments for Chagas disease. One Sentence Summary: We present the computer-guided drug repositioning of three approved drugs as potential new treatments for Chagas disease, integrating computer-aided drug screening and biochemical, cellular and preclinical tests.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2015.01.065DOI Listing

Publication Analysis

Top Keywords

clofazimine benidipine
16
chagas disease
16
computer-guided drug
12
drug repositioning
12
benidipine saquinavir
8
approved drugs
8
biochemical cellular
8
treatments chagas
8
drug
6
drug repurposing
4

Similar Publications

Arenaviruses are a large family of enveloped negative-strand RNA viruses that include several causative agents of severe hemorrhagic fevers. Currently, there are no FDA-licensed drugs to treat arenavirus infection except for the off-labeled use of ribavirin. Here, we performed antiviral drug screening against the Old World arenavirus lymphocytic choriomeningitis virus (LCMV) using an FDA-approved drug library.

View Article and Find Full Text PDF

Combined therapy with Benznidazole and repurposed drugs Clofazimine and Benidipine for chronic Chagas disease.

Eur J Med Chem

December 2019

Instituto de Microbiología y Parasitología Médica (IMPaM, CONICET-UBA), Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina. Electronic address:

View Article and Find Full Text PDF

Novel cruzipain inhibitors for the chemotherapy of chronic Chagas disease.

Int J Antimicrob Agents

July 2016

Department of Microbiology, School of Medicine, University of Buenos Aires (UBA), Instituto de Microbiología y Parasitología Médica (IMPaM-UBA CONICET), Buenos Aires, Argentina.

Despite current efforts worldwide to develop new medications against Chagas disease, only two drugs are available, nifurtimox and benznidazole. Both drugs require prolonged treatment and have multiple side effects and limited efficacy on adult patients chronically infected with Trypanosoma cruzi. Recently, computer-guided drug repositioning led to the discovery of the trypanocidal effects of clofazimine and benidipine.

View Article and Find Full Text PDF

In spite of remarkable advances in the knowledge on Trypanosoma cruzi biology, no medications to treat Chagas disease have been approved in the last 40 years and almost 8 million people remain infected. Since the public sector and non-profit organizations play a significant role in the research efforts on Chagas disease, it is important to implement research strategies that promote translation of basic research into the clinical practice. Recent international public-private initiatives address the potential of drug repositioning (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!