Nanoporous gold as a neural interface coating: effects of topography, surface chemistry, and feature size.

ACS Appl Mater Interfaces

§Lawrence Livermore National Laboratory, Livermore, California 94551, United States.

Published: April 2015

Designing neural interfaces that maintain close physical coupling of neurons to an electrode surface remains a major challenge for both implantable and in vitro neural recording electrode arrays. Typically, low-impedance nanostructured electrode coatings rely on chemical cues from pharmaceuticals or surface-immobilized peptides to suppress glial scar tissue formation over the electrode surface (astrogliosis), which is an obstacle to reliable neuron-electrode coupling. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising candidate to reduce astrogliosis solely through topography by taking advantage of its tunable length scale. In the present in vitro study on np-Au's interaction with cortical neuron-glia co-cultures, we demonstrate that the nanostructure of np-Au achieves close physical coupling of neurons by maintaining a high neuron-to-astrocyte surface coverage ratio. Atomic layer deposition-based surface modification was employed to decouple the effect of morphology from surface chemistry. Additionally, length scale effects were systematically studied by controlling the characteristic feature size of np-Au through variations in the dealloying conditions. Our results show that np-Au nanotopography, not surface chemistry, reduces astrocyte surface coverage while maintaining high neuronal coverage and may enhance neuron-electrode coupling through nanostructure-mediated suppression of scar tissue formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4517587PMC
http://dx.doi.org/10.1021/acsami.5b00410DOI Listing

Publication Analysis

Top Keywords

surface chemistry
12
nanoporous gold
8
surface
8
feature size
8
close physical
8
physical coupling
8
coupling neurons
8
electrode surface
8
scar tissue
8
tissue formation
8

Similar Publications

Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.

View Article and Find Full Text PDF

Construction of Mn-Defective S/MnCdS for Promoting Photocatalytic N Reduction.

Inorg Chem

January 2025

Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.

Improving catalytic performance by controlling the microstructure of materials has become a hot topic in the field of photocatalysis, such as the surface defect site, multistage layered morphology, and exposed crystal surface. Due to the differences in the metal atomic radius (Mn and Cd) and solubility product constant (MnS and CdS), Mn defect easily occurred in the S/MnCdS (S/0.4MCS) composite.

View Article and Find Full Text PDF

To balance the stability and dissolution of polyacrylamide (PAM), emulsion drag reducers dominate the successful operation of volumetric fracturing. Herein, a pH-switchable four-tailed ionic liquid surfactant (OA/Cyclen) is synthesized by oleic acid (OA) and 1,4,7,10-tetraazacyclododecane (Cyclen). The four-tailed structure of OA/Cyclen enhances the stability of the emulsion polymerization reactor and supplies enough switchable sites for triggering the intensified release of the PAM emulsion.

View Article and Find Full Text PDF

Catalyst-Free Nitrogen Fixation by Microdroplets through a Radical-Mediated Disproportionation Mechanism under Ambient Conditions.

J Am Chem Soc

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.

Nitrogen fixation is essential for the sustainable development of both human society and the environment. Due to the chemical inertness of the N≡N bond, the traditional Haber-Bosch process operates under extreme conditions, making nitrogen fixation under ambient conditions highly desirable but challenging. In this study, we present an ultrasonic atomizing microdroplet method that achieves nitrogen fixation using water and air under ambient conditions in a rationally designed sealed device, without the need for any catalyst.

View Article and Find Full Text PDF

Copper Chelate Targeting Externalized Phosphatidylserine Inhibits PD-L1 Expression and Enhances Cancer Immunotherapy.

J Am Chem Soc

January 2025

Department of Pharmacy, The First Affiliated Hospital of USTC; Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparation and Clinical Pharmacy, Hefei, Anhui 230026, China.

Inhibitors of the PD-1/PD-L1 immune checkpoint have revolutionized cancer treatment. However, the clinical response remains limited, with only 20% of patients benefiting from treatment and approximately 60% of PD-L1-positive patients exhibiting resistance. One key factor contributing to resistance is the externalization of phosphatidylserine (PS) on the surface of cancer cells, which suppresses immune responses and promotes PD-L1 expression, further hindering the efficacy of PD-L1 blockade therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!