Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338427PMC
http://dx.doi.org/10.1038/oncsis.2015.4DOI Listing

Publication Analysis

Top Keywords

mutyh adenine
4
adenine dna
4
dna glycosylase
4
glycosylase mediates
4
mediates p53
4
p53 tumor
4
tumor suppression
4
suppression parp-dependent
4
parp-dependent cell
4
cell death
4

Similar Publications

Purpose: Although lung cancer is one of the most common malignancies, the underlying genetics regarding susceptibility remain poorly understood. We characterized the spectrum of pathogenic/likely pathogenic (P/LP) germline variants within DNA damage response (DDR) genes among lung cancer cases and controls in non-Hispanic Whites (NHWs) and African Americans (AAs).

Materials And Methods: Rare, germline variants in 67 DDR genes with evidence of pathogenicity were identified using the ClinVar database.

View Article and Find Full Text PDF

Telomeres are hypersensitive to the formation of the common oxidative lesion 8-oxoguanine (8oxoG), which impacts telomere stability and function. OGG1 and MUTYH glycosylases initiate base excision repair (BER) to remove 8oxoG or prevent mutation. Here, we show OGG1 loss or inhibition, or MUTYH loss, partially rescues telomeric 8oxoG-induced premature senescence and associated proinflammatory responses, while loss of both glycosylases causes a near complete rescue in human fibroblasts.

View Article and Find Full Text PDF

Role of Mutyh in Oxidative Stress Damage in Retinopathy of Prematurity.

Zhongguo Yi Xue Ke Xue Yuan Xue Bao

December 2024

Department of Neonatology, Children's Hospital of Nanjing Medical University,Nanjing 210000,China.

Objective To explore the role of the base mismatch repair gene Mutyh in retinopathy of prematurity(ROP). Methods Mutyh(-/-)and wild-type(WT)mice were used for the modeling of oxygen-induced retinopathy.The retinal oxidative stress was examined,and the ultrastructures of photoreceptors and mitochondria were observed.

View Article and Find Full Text PDF

8-oxoguanine (8-oxoG) is a common oxidative DNA lesion that causes G > T substitutions. Determinants of local and regional differences in 8-oxoG-induced mutability across genomes are currently unknown. Here, we show DNA oxidation induces G > T substitutions and insertion/deletion (INDEL) mutations in human cells and cancers.

View Article and Find Full Text PDF

Genomic 8-oxoguanine modulates gene transcription independent of its repair by DNA glycosylases OGG1 and MUTYH.

Redox Biol

February 2025

Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, 7006, Trondheim, Norway. Electronic address:

8-oxo-7,8-dihydroguanine (OG) is one of the most abundant oxidative lesions in the genome and is associated with genome instability. Its mutagenic potential is counteracted by a concerted action of 8-oxoguanine DNA glycosylase (OGG1) and mutY homolog DNA glycosylase (MUTYH). It has been suggested that OG and its repair has epigenetic-like properties and mediates transcription, but genome-wide evidence of this interdependence is lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!