The role of the health physicist in nuclear security.

Health Phys

*University of Ontario Institute of Technology, Faculty of Energy Systems and Nuclear Science, 2000 Simcoe Street North, Oshawa, Ontario, L1H 7K4, Canada; †Radinpro BV., Rotterdam, The Netherlands.

Published: April 2015

Health physics is a recognized safety function in the holistic context of the protection of workers, members of the public, and the environment against the hazardous effects of ionizing radiation, often generically designated as radiation protection. The role of the health physicist as protector dates back to the Manhattan Project. Nuclear security is the prevention and detection of, and response to, criminal or intentional unauthorized acts involving or directed at nuclear material, other radioactive material, associated facilities, or associated activities. Its importance has become more visible and pronounced in the post 9/11 environment, and it has a shared purpose with health physics in the context of protection of workers, members of the public, and the environment. However, the duties and responsibilities of the health physicist in the nuclear security domain are neither clearly defined nor recognized, while a fundamental understanding of nuclear phenomena in general, nuclear or other radioactive material specifically, and the potential hazards related to them is required for threat assessment, protection, and risk management. Furthermore, given the unique skills and attributes of professional health physicists, it is argued that the role of the health physicist should encompass all aspects of nuclear security, ranging from input in the development to implementation and execution of an efficient and effective nuclear security regime. As such, health physicists should transcend their current typical role as consultants in nuclear security issues and become fully integrated and recognized experts in the nuclear security domain and decision making process. Issues regarding the security clearances of health physics personnel and the possibility of insider threats must be addressed in the same manner as for other trusted individuals; however, the net gain from recognizing and integrating health physics expertise in all levels of a nuclear security regime far outweighs any negative aspects. In fact, it can be argued that health physics is essential in achieving an integrated approach toward nuclear safety, security, and safeguards.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4418781PMC
http://dx.doi.org/10.1097/HP.0000000000000258DOI Listing

Publication Analysis

Top Keywords

nuclear security
32
health physics
20
health physicist
16
role health
12
nuclear
12
security
10
health
10
physicist nuclear
8
context protection
8
protection workers
8

Similar Publications

Advanced control strategy for AC microgrids: a hybrid ANN-based adaptive PI controller with droop control and virtual impedance technique.

Sci Rep

December 2024

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.

In this paper, an improved voltage control strategy for microgrids (MG) is proposed, using an artificial neural network (ANN)-based adaptive proportional-integral (PI) controller combined with droop control and virtual impedance techniques (VIT). The control strategy is developed to improve voltage control, power sharing and total harmonic distortion (THD) reduction in the MG systems with renewable and distributed generation (DG) sources. The VIT is used to decouple active and reactive power, reduce negative power interactions between DG's and improve the robustness of the system under varying load and generation conditions.

View Article and Find Full Text PDF

Gamma-ray coded-aperture imaging technology has important applications in the fields of nuclear security, isolated source detection, and the decommissioning of nuclear facilities. However, artifacts can reduce the quality of reconstructed images and affect the identification of the intensity and location of radioactive sources. In this paper, a gamma-ray coded-aperture imaging method based on primitive and reversed coded functions (PRCF) was proposed to reduce imaging artifacts.

View Article and Find Full Text PDF

Hypothesis: Nanoscale characterisation of the self-associated species formed by amphiphilic pharmaceuticals in aqueous solution carries relevance across their entire journey from development through to manufacture - relevant, therefore, not only as regards formulation of the drug products as medicines, but also potentially relevant to their bioavailability, activity, and clinical side effects. Such knowledge and understanding, however, can only be fully secured by applying a range of experimental and theoretical methodologies.

Experiments: Herein, we apply a synergistic combination of solubility, surface tension, SANS, NMR and UV spectroscopic studies, together with MD simulation and QM calculations, to investigate the meso-structures of propranolol hydrochloride aggregates in bulk aqueous solutions, at concentrations spanning 2.

View Article and Find Full Text PDF

Jilin Province is an important ecological security barrier in Northeast China as it is located at the junction of the Northeast forest belts and the northern sand prevention belts. In recent years, Jilin Province has actively carried out ecological protection and restoration projects, resulting in a continuous improvement trend for the overall ecological environment. However, the evolution patterns and mechanisms of habitat quality are largely unkown.

View Article and Find Full Text PDF

Findings and Recommendations From a Series of Workshops on Hospital Emergency Responses to an Improvised Nuclear Device Detonation.

Health Secur

December 2024

Jenna Mandel-Ricci, MPA, MPH, is Chief of Staff; both at the New York City Department of Health and Mental Hygiene, Long Island City, NY.

The New York City Department of Health and Mental Hygiene and the Greater New York Hospital Association held 3 workshops and 2 follow-up meetings with hospital emergency managers and colleagues to determine hospitals' response actions to a scenario of a 10-kiloton improvised nuclear device detonation. The scenario incorporated 3 zones of damage (moderate, light, and beyond damage zones) and covered the period of 0 to 72 hours postdetonation divided into 3 24-hour operational periods. The Joint Commission's critical emergency areas were used to determine the objectives and response actions that would be initiated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!