Bioenergetics and the role of soluble cytochromes C for alkaline adaptation in gram-negative alkaliphilic Pseudomonas.

Biomed Res Int

Laboratory of Environmental Microbiology, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo 060-8589, Japan ; Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi Toyohira-ku, Sapporo 062-8517, Japan.

Published: November 2015

AI Article Synopsis

  • Very few studies investigate how Gram-negative alkaliphiles adapt to high pH environments, impacting energy production due to altered H(+) concentration gradients.
  • Cells of the alkaliphilic bacterium Pseudomonas alcaliphila display significantly higher levels of cytochrome c when grown in alkaline conditions compared to neutral pH, indicating a potential adaptation mechanism.
  • A cytochrome c-552-deficient mutant showed reduced growth and turbidity under alkaline conditions, suggesting that cytochromes c help with electron storage and energy production when oxygen and proton availability is low.

Article Abstract

Very few studies have been conducted on alkaline adaptation of Gram-negative alkaliphiles. The reversed difference of H(+) concentration across the membrane will make energy production considerably difficult for Gram-negative as well as Gram-positive bacteria. Cells of the alkaliphilic Gram-negative bacterium Pseudomonas alcaliphila AL15-21(T) grown at pH 10 under low-aeration intensity have a soluble cytochrome c content that is 3.6-fold higher than that of the cells grown at pH 7 under high-aeration intensity. Cytochrome c-552 content was higher (64% in all soluble cytochromes c) than those of cytochrome c-554 and cytochrome c-551. In the cytochrome c-552-dificient mutant grown at pH 10 under low-aeration intensity showed a marked decrease in μ max⁡ [h(-1)] (40%) and maximum cell turbidity (25%) relative to those of the wild type. Considering the high electron-retaining abilities of the three soluble cytochromes c, the deteriorations in the growth of the cytochrome c-552-deficient mutant could be caused by the soluble cytochromes c acting as electron storages in the periplasmic space of the bacterium. These electron-retaining cytochromes c may play a role as electron and H(+) condenser, which facilitate terminal oxidation at high pH under air-limited conditions, which is difficult to respire owing to less oxygen and less H(+).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332470PMC
http://dx.doi.org/10.1155/2015/847945DOI Listing

Publication Analysis

Top Keywords

soluble cytochromes
16
alkaline adaptation
8
adaptation gram-negative
8
grown low-aeration
8
low-aeration intensity
8
cytochrome
6
soluble
5
cytochromes
5
bioenergetics role
4
role soluble
4

Similar Publications

Novel antimalarial 3-substituted quinolones isosteres with improved pharmacokinetic properties.

Eur J Med Chem

December 2024

School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, China; Department of Chemistry, University of Liverpool, L69 7ZD, Liverpool, UK. Electronic address:

Aryl quinolone derivatives can target the cytochrome bc complex of Plasmodium falciparum, exhibiting excellent in vitro and in vivo antimalarial activity. However, their clinical development has been hindered due to their poor aqueous solubility profiles. In this study, a series of bioisosteres containing saturated heterocycles fused to a 4-pyridone ring were designed to replace the inherently poorly soluble quinolone core in antimalarial quinolones with the aim to reduce π-π stacking interactions in the crystal packing solid state, and a synthetic route was developed to prepare these alternative core derivatives.

View Article and Find Full Text PDF

A possible origin of life in nonpolar environments.

Biosystems

December 2024

University of Maribor, Faculty of Natural Sciences and Mathematics, Koroška Cesta 160, 2000, Maribor, Slovenia; University of Maribor, Faculty of Medicine, Taborska ulica 8, 2000, Maribor, Slovenia. Electronic address:

Explaining the emergence of life is perhaps the central and most challenging question in modern science. We are proposing a new hypothesis concerning the origins of life. The new hypothesis is based on the assumption that during the emergence of life, evolution had to first involve autocatalytic systems which only subsequently acquired the capacity of genetic heredity.

View Article and Find Full Text PDF

Extracellular electron transfer-dependent bioremediation of uranium-contaminated groundwater: Advancements and challenges.

Water Res

December 2024

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. Electronic address:

Efficient and sustainable remediation of uranium-contaminated groundwater is critical for groundwater safety and the sustainable development of nuclear energy, particularly in the context of global carbon neutrality goals. This review explores the potential of microbial reduction processes that utilize extracellular electron transfer (EET) to convert soluble uranium (U(VI)) into its insoluble form (U(IV)), presenting a promising approach to groundwater remediation. The review first outlines the key processes and factors influencing the effectiveness of dissimilatory metal-reducing bacteria (DMRB), such as Geobacter and Shewanella, during uranium bioremediation and recovery.

View Article and Find Full Text PDF

Functional Expression and Construction of a Self-Sufficient Cytochrome P450 Chimera for Efficient Steroidal C14α Hydroxylation in Escherichia coli.

Biotechnol Bioeng

December 2024

National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China.

C14-functionalized steroids enabled diverse biological activities in anti-gonadotropin and anticancer therapy. However, access to C14-functionalized steroids was impeded by the deficiency of chemical synthetic methods. Recently, several membrane-bound fungal cytochrome P450s (CYPs) have been identified with steroid C14α-hydroxylation activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!