We present a review of modern optical techniques being used and developed for the field of gravitational wave detection. We describe the current state-of-the-art of gravitational waves detector technologies with regard to optical layouts, suspensions and test masses. We discuss the dominant sources and noise in each of these subsystems and the developments that will help mitigate them for future generations of detectors. We very briefly summarise some of the novel astrophysics that will be possible with these upgraded detectors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4311950 | PMC |
http://dx.doi.org/10.1080/09500340.2014.920934 | DOI Listing |
Sci Rep
December 2024
Department of Physics, University of Trento, Via Sommarive 14, 38123, Povo (TN), Italy.
It has been argued that realistic models of (singularity-free) black holes (BHs) embedded within an expanding Universe are coupled to the large-scale cosmological dynamics, with striking consequences, including pure cosmological growth of BH masses. In this pilot study, we examine the consequences of this growth for the stochastic gravitational wave background (SGWB) produced by inspiraling supermassive cosmologically coupled BHs. We show that the predicted SGWB amplitude is enhanced relative to the standard uncoupled case, while maintaining the [Formula: see text] frequency scaling of the spectral energy density.
View Article and Find Full Text PDFSci Rep
December 2024
Tsung-Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
The experimental verification of the Newton law of gravity at small scales has been a longstanding challenge. Recently, torsion balance experiments have successfully measured gravitational force at the millimeter scale. However, testing gravity force on quantum mechanical wave function at small scales remains difficult.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Faculty of Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warszawa, Poland.
We present an approach to detecting (linear) gravitational wave memory in a Galactic core-collapse supernova using current interferometers. Gravitational wave memory is an important prediction of general relativity that has yet to be confirmed. Our approach uses a combination of linear prediction filtering and matched filtering.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Space Environmental Load Engineering Center, Lanzhou Institute of Physics, Lanzhou 730000, China.
Sensors (Basel)
November 2024
Center for Gravitational Wave Experiment, National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
Since Einstein's prediction regarding the existence of gravitational waves was directly verified by the ground-based detector Advanced LIGO, research on gravitational wave detection has garnered increasing attention. To overcome limitations imposed by ground vibrations and interference at arm's length, a space-based gravitational wave detection initiative was proposed, which focuses on analyzing a large number of waves within the frequency range below 1 Hz. Due to the weak signal intensity, the TMs must move along their geodesic orbit with a residual acceleration less than 10 m/s/Hz.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!