We have successfully demonstrated an efficient anodic aromatic C,C cross-coupling reaction using parallel laminar flow mode in a two-inlet flow microreactor. The model reaction proceeded effectively even in single flow-through operations and the desired cross-coupling product was obtained in much higher current yields compared to the reaction in a conventional batch type cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cc01253h | DOI Listing |
Chemistry
December 2024
Ulsan National Institute of Science and Technology, Chemistry, UNIST-gil 50, Bldg.108, Rm901-5, 44919, Ulsan, KOREA, REPUBLIC OF.
Nanographenes and polycyclic aromatic hydrocarbons, both finite forms of graphene, are promising organic semiconducting materials because their optoelectronic and magnetic properties can be modulated through precise control of their molecular peripheries. Several atomically precise edge structures have been prepared by bottom-up synthesis; however, no systematic elucidation of these edge topologies at the molecular level has been reported. Herein, we describe rationally designed modular syntheses of isomeric dibenzoixenes with diverse molecular peripheries, including cove, zigzag, bay, fjord, and gulf structured.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China.
Via conductance measurements of thousands of single-molecule junctions, we report that the π-π coupling between neighboring aromatic molecules can be manipulated by laser illumination. We reveal that this optical manipulation originates from the optical plasmonic gradient force generated inside the nanogaps, in which the gapped antenna electrodes act as optical tweezers pushing the neighboring molecules closer together. These findings offer a nondestructive approach to regulate the interaction of the molecules, deepening the understanding of the mechanism of π-π interaction, and open an avenue to manipulate the relative position of extremely small objects down to the scale of single molecules.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States.
AC plasmas directly excited within liquid hydrocarbons were investigated for the production of hydrogen and unsaturated C hydrocarbon in a recirculating liquid "jet" flow configuration. Arc discharges were excited at two different frequencies (60 Hz and 17.3 kHz) in C-C hydrocarbons (hexane, cyclohexane, benzene, toluene, and xylene) to produce H, CH, CH, and CH, along with liquid and solid carbon byproducts.
View Article and Find Full Text PDFSmall Methods
December 2024
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 106, Taiwan.
Dual-ion batteries (DIBs) are garnering immense attention for their capability to operate without the expensive elements required by lithium-ion batteries. Phenylenediamine serves as a versatile and sustainable resource, enabling the efficient preparation of both cathode and anode materials through precise molecular control and straightforward synthesis. The innovative asymmetrical DIBs based on amine-rich poly(phenylenediamine) cathodes and imine-rich poly(phenylenediamine) anodes enable oxidative and reductive states, providing a transition metal-free rechargeable battery.
View Article and Find Full Text PDFChemSusChem
December 2024
Yangzhou University, School of Chemistry and Chemical Engineering, CHINA.
Ever since lithium (Li) ion batteries were successfully commercialized, aromatic compounds have attended every turning point in optimizing electrolytes, separators, and even electrode materials. However, the contribution of aromatic compounds has always been neglected compared to other advanced materials. At the same time, designing next-generation Li-ion batteries with higher flexibility, solid-state electrolytes, high energy density, and better coulombic efficiency has imposed stricter duties on aromatic components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!