Direct and selective hydrogenolysis of arenols and aryl methyl ethers.

Nat Commun

Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

Published: February 2015

For valorization of biomass, the conversion of lignin to deoxygenated bulk aromatic compounds is an emerging subject of interest. Because aromatic rings are susceptible to metal-catalysed hydrogenation, the selective hydrogenolysis of carbon-oxygen bonds still remains a great challenge. Herein we report direct and selective hydrogenolysis of sp(2) C-OH bonds in substituted phenols and naphthols catalysed by hydroxycyclopentadienyl iridium complexes. The corresponding arenes were obtained in up to 99% yields, indicating the possible production of arenes from lignin-derived bio-oils. Furthermore, the same catalysts were applied to the unprecedented selective hydrogenolysis of the sp(3) C-O bonds in aryl methyl ethers. Thus, the hydrodeoxygenation of vanillylacetone, a lignin model compound, afforded alkylbenzenes as the major products via triple deoxygenation.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms7296DOI Listing

Publication Analysis

Top Keywords

selective hydrogenolysis
16
direct selective
8
aryl methyl
8
methyl ethers
8
hydrogenolysis
4
hydrogenolysis arenols
4
arenols aryl
4
ethers valorization
4
valorization biomass
4
biomass conversion
4

Similar Publications

Enhancing selectivity of β-O-4 bond cleavage for lignin depolymerization a sacrificial anode.

Chem Commun (Camb)

January 2025

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640 Guangzhou, P. R. China.

Herein, we report a novel electrochemical hydrogenolysis method for β-O-4 bond cleavage by using carbon foam as the cathode and waste aluminum as the anode. The reaction takes place at the cathode, producing ketones and phenolic compounds. Employing waste aluminum as the anode could avoid anodic excessive oxidation of phenols.

View Article and Find Full Text PDF

Depolymerizing plastic waste through hydrogen-based processes, such as hydrogenolysis and hydrocracking, presents a promising solution for converting plastics into liquid fuels. However, conventional hydrogen production methods rely heavily on fossil fuels, exacerbating global warming. This study introduces a novel approach to plastic waste hydrogenolysis that utilizes in situ hydrogen generated via the aqueous phase reforming (APR) of methanol, a biomass-derived chemical offering a more sustainable alternative.

View Article and Find Full Text PDF

Fabrication of lignin-MOF derived spherical carbon supported NiCo-bimetallic catalysts for selective hydrogenolysis lignin derived ether.

Int J Biol Macromol

December 2024

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China. Electronic address:

The conversion of abundant lignin was of great significance for the utilization of biomass resources. In this study, lignin sulfonate (LS) was selected as a carbon-based support, which was successfully introduced into the NiCo-MOF structure. A series of lignin and MOF hybrid catalysts (NiCo-MOF-LS) with varying metal ratios of Ni and Co were synthesized via the hydrothermal method.

View Article and Find Full Text PDF

Pt-ZnO Interfacial Effect on the Performance of Propane Dehydrogenation and Mechanism Study.

ACS Nano

December 2024

School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China.

Bimetallic Pt-based catalysts, for example, PtZn and PtSn catalysts, have gained significant attention for addressing the poor stability and low selectivity of pristine Pt catalysts over propane dehydrogenation (PDH). However, the structures of the active sites and the corresponding catalytic mechanism of PDH are still elusive. Here, we demonstrate a spatially confined Pt-ZnO@RUB-15 catalyst (where "" is the mole ratio of Zn/Pt and RUB-15 is a layered silica), which exhibited high catalytic activity, ultrahigh selectivity (>99%), and resistance to coking at 550 °C for PDH.

View Article and Find Full Text PDF

Chemical recycling of plastic waste could reduce its environmental impact and create a more sustainable society. Hydrogenolysis is a viable method for polyolefin valorization but typically requires high hydrogen pressures to minimize methane production. Here, we circumvent this stringent requirement using dilute RuPt alloy to suppress the undesired terminal C-C scission under hydrogen-lean conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!