Self-assembly of only one functionalized porphyrin dye molecule with one CdSe/ZnS quantum dot (QD) not only modifies the photoluminescence (PL) intensity but also creates a few energetically clearly distinguishable electronic states, opening additional effective relaxation pathways. The related energy modifications are in the range of 10-30 meV and show a pronounced sensitivity to the specific nature of the respective dye. We assign the emerging energies to surface states. Time-resolved PL spectroscopy in combination with spectral deconvolution reveals that surface properties of QDs are a complex interplay of the nature of the dye molecule and the topography of the ligand layer across a temperature range from 77 to 290 K. This includes a kind of phase transition of trioctylphosphine oxide ligands, switching the nature of surface states observed below and above the phase transition temperature. Most importantly, our findings can be closely related to recent calculations of ligand-induced modifications of surface states of QDs. The identification of the optical properties emerged from a combination of spectroscopy on single QDs and QDs in an ensemble.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn506941cDOI Listing

Publication Analysis

Top Keywords

dye molecule
12
surface states
12
electronic states
8
cdse/zns quantum
8
quantum dot
8
phase transition
8
states
5
tuning electronic
4
states cdse/zns
4
dot functional
4

Similar Publications

Engineering a Novel NIR RNA-Specific Probe for Tracking Stress Granule Dynamics in Living Cells.

Anal Chem

January 2025

Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.

Real-time monitoring of the dynamics of cytosolic RNA-protein condensates, termed stress granules (SGs), is vital for understanding their biological roles in stress response and related disease treatment but is challenging due to the lack of simple and accurate methods. Compared with protein visualization that requires complex transfection procedures, direct RNA labeling offers an ideal alternative for tracking SG dynamics in living cells. Here, we propose a novel molecular design strategy to construct a near-infrared RNA-specific fluorescent probe () for tracking SGs in living cells.

View Article and Find Full Text PDF

Currently commercial colorimetric paper lateral flow immunoassays exhibit insufficient limit of detection (LOD) and limited clinical sensitivity toward the detection of SARS-CoV-2 antigens, which causes a high false negative rate. To mitigate this issue, a new plasmon-enhanced fluorescence probe was developed for paper lateral flow strips (PLFSs). The probe is made of a sandwich-structured Ag-core@silica@dye@silica-shell nanoparticle in which fluorescent dyes are sandwiched between the plasmonic Ag core and the silica outer shell, and the separation distance between the Ag core and the dye molecules is controlled by the silica space layer.

View Article and Find Full Text PDF

Exosomes, which are known to transport diverse proteins from parent cells to recipient cells, consequently influence the biological activities of the recipient cells. Among those proteins, the epithelial cell adhesion molecule (EpCAM), plays a crucial role as it is implicated in cell adhesion and signaling processes. As exosomal EpCAM potentially affects the migration of recipient cells, direct visualization with high spatial resolution is essential to better understand this impact and the role of exosomal EpCAM in recipient cells.

View Article and Find Full Text PDF

Oxazolidine is a new category of stimuli-chromic compounds that has unique intelligent behaviors such as halochromism, hydrochromism, solvatochromism, and ionochromism, all of which have potential applications for designing and constructing chemosensors by using functionalized-polymer nanocarriers. Here, the poly(MMA--HEMA) based nanoparticles were synthesized by emulsion copolymerizing methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) in different copolymer compositions. The poly(MMA--HEMA) based nanoparticles were modified physically with tertiary amine-functionalized oxazolidine (as an intelligent pH-responsive organic dye) to prepare halochromic latex nanoparticles.

View Article and Find Full Text PDF

This study investigated the adsorptive properties of functionalized fabric containing dimethylaminomethyl calix[4]arene (DMAM-Calix) to remove anionic methyl orange (MO) and cationic Rhodamine B (RhB) dyes in aqueous media. Adsorption studies were performed using a filtration system packed with DMAM-Calix-functionalized fabric (). The results revealed that the cationic and anionic structures work compatibly in a binary mixture medium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!