In this study, expression of four peroxidase genes, LePrx09, LePrx17, LePrx35 and LePrxA, was identified in immature tomato fruits, and the function in the regulation of fruit growth was characterized. Analysis of amino acid sequences revealed that these genes code for class III peroxidases, containing B, D and F conserved domains, which bind heme groups, and a buried salt bridge motif. LePrx35 and LePrxA were identified as novel peroxidase genes in Solanum lycopersicum (L.). The temporal expression patterns at various fruit growth stages revealed that LePrx35 and LePrxA were expressed only in immature green (IMG) fruits, whereas LePrx17 and LePrx09 were expressed in both immature and mature green fruits. Tissue-specific expression profiles indicated that only LePrx09 was expressed in the mesocarp but not the inner tissue of immature fruits. The effects of hormone treatments and stresses on the four genes were examined; only the expression levels of LePrx17 and LePrx09 were altered. Transcription of LePrx17 was up-regulated by jasmonic acid (JA) and pathogen infection and expression of LePrx09 was induced by ethephon, salicylic acid (SA) and JA, in particular, as well as wounding, pathogen infection and H2O2 stress. Tomato plants over-expressing LePrx09 displayed enhanced resistance to H2O2 stress, suggesting that LePrx09 may participate in the H2O2 signaling pathway to regulate fruit growth and disease resistance in tomato fruits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2015.01.011DOI Listing

Publication Analysis

Top Keywords

peroxidase genes
12
leprx35 leprxa
12
fruit growth
12
class iii
8
solanum lycopersicum
8
leprxa identified
8
tomato fruits
8
expressed immature
8
leprx17 leprx09
8
leprx09 expressed
8

Similar Publications

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Ion homeostasis and coordinated salt tolerance mechanisms in a barley (Hordeum vulgare L.)doubled haploid line.

BMC Plant Biol

January 2025

Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.

Salinization poses a significant challenge in agriculture. Identifying salt-tolerant plant germplasm resources and understanding their mechanisms of salt tolerance are crucial for breeding new salt-tolerant plant varieties. However, one of the primary obstacles to achieving this goal in crops is the physiological complexity of the salt-tolerance trait.

View Article and Find Full Text PDF

This study primarily investigated the mechanism of Astragalus polysaccharides(APS), a Chinese medicinal material, in regulating the Nrf2/SLC7A11/GPX4 signaling pathway to induce ferroptosis in ovarian cancer cells(Caov-3 and SKOV3 cells). Caov-3 and SKOV3 cells were divided into control(Vehicle) group, APS group, glutathione peroxidase 4 inhibitor(RSL3) group, and APS+RSL3 group. After 48 h of intervention, the activity and morphology of the cells in each group were observed.

View Article and Find Full Text PDF

Exploring Tetraselmis chui microbiomes-functional metagenomics for novel catalases and superoxide dismutases.

Appl Microbiol Biotechnol

January 2025

Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany.

The focus on microalgae for applications in several fields, e.g. resources for biofuel, the food industry, cosmetics, nutraceuticals, biotechnology, and healthcare, has gained increasing attention over the last decades.

View Article and Find Full Text PDF

BPC1 and BPC2 positively regulates the waterlogging stress tolerance in Arabidopsis thaliana.

Biochem Biophys Res Commun

January 2025

Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China. Electronic address:

Waterlogging stress is a significant abiotic factor that severely limits plant growth and development. Identifying genes involved in the waterlogging stress response and understanding the mechanisms by which plants resist waterlogging stress are therefore critical. In this study, we identified a specific role for two transcription factors, BPC1 and BPC2, in the waterlogging stress response of Arabidopsis thaliana.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!