G protein-coupled estrogen receptor (GPER) is a relatively recently identified non-nuclear estrogen receptor, expressed in several tissues, including brain and blood vessels. The mechanisms elicited by GPER activation in brain microvascular endothelial cells are incompletely understood. The purpose of this work was to assess the effects of GPER activation on cytosolic Ca(2+) concentration, [Ca(2+)](i), nitric oxide production, membrane potential and cell nanomechanics in rat brain microvascular endothelial cells (RBMVEC). Extracellular but not intracellular administration of G-1, a selective GPER agonist, or extracellular administration of 17-β-estradiol and tamoxifen, increased [Ca(2+)](i) in RBMVEC. The effect of G-1 on [Ca(2+)](i) was abolished in Ca(2+) -free saline or in the presence of a L-type Ca(2+) channel blocker. G-1 increased nitric oxide production in RBMVEC; the effect was prevented by NG-nitro-l-arginine methyl ester. G-1 elicited membrane hyperpolarization that was abolished by the antagonists of small and intermediate-conductance Ca(2+) -activated K(+) channels, apamin, and charibdotoxin. GPER-mediated responses were sensitive to G-36, a GPER antagonist. In addition, atomic force microscopy studies revealed that G-1 increased the modulus of elasticity, indicative of cytoskeletal changes and increase in RBMVEC stiffness. Our results unravel the mechanisms underlying GPER-mediated effects in RBMVEC with implications for the effect of estrogen on cerebral microvasculature. Activation of the G protein-coupled estrogen receptor (GPER) in rat brain microvascular endothelial cells (RBMVEC) increases [Ca(2+)](i) by promoting Ca(2+) influx. The increase in [Ca(2+)](i) leads to membrane hyperpolarization, nitric oxide (NO) production, and to cytoskeletal changes and increased cell stiffness. Our results unravel the mechanisms underlying GPER-mediated effects in RBMVEC with implications for the effect of estrogen on cerebral microvasculature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562690 | PMC |
http://dx.doi.org/10.1111/jnc.13066 | DOI Listing |
Biomed Pharmacother
January 2025
Department of Neurology and Center for Translational Neuro, and Behavioural Sciences (C-TNBS), Department of Neurology, University Hospital Essen, Essen 45147, Germany; Department of Pharmacology & Personalised Medicine, MeHNS, Faculty of Health, Medicine & Life Science, Maastricht University, Maastricht, ER 6229, the Netherlands. Electronic address:
Soluble guanylate cyclase (sGC) stands as a pivotal regulatory element in intracellular signalling pathways, mediating the formation of cyclic guanosine monophosphate (cGMP) and impacting diverse physiological processes across tissues. Increased formation of reactive oxygen species (ROS) is widely recognized to modulate cGMP signalling. Indeed, oxidatively damaged, and therefore inactive sGC, contributes to poor vascular reactivity and more severe neurological damage upon stroke.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
Introduction: Transcranial pulse stimulation (TPS) is increasingly being investigated as a promising potential treatment for Alzheimer's disease (AD). Although the safety and preliminary clinical efficacy of TPS short pulses have been supported by neuropsychological scores in treated AD patients, its fundamental mechanisms are uncharted.
Methods: Herein, we used a multi-modal preclinical imaging platform combining real-time volumetric optoacoustic tomography, contrast-enhanced magnetic resonance imaging, and ex vivo immunofluorescence to comprehensively analyze structural and hemodynamic effects induced by TPS.
BMJ Open
December 2024
British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
Introduction: Ischaemic heart disease (IHD) and cerebrovascular disease are leading causes of morbidity and mortality worldwide. Cerebral small vessel disease (CSVD) is a leading cause of dementia and stroke. While coronary small vessel disease (coronary microvascular dysfunction) causes microvascular angina and is associated with increased morbidity and mortality.
View Article and Find Full Text PDFBBA Adv
December 2024
University of São Paulo, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), São Paulo, 05508-000, Brazil.
Metastases are the leading cause of cancer-related deaths, and their origin is not fully elucidated. Recently, studies have shown that extracellular vesicles (EVs), particularly small extracellular vesicles (sEV), can disrupt the homeostasis of organs, promoting the development of a secondary tumor. However, the role of sEV in brain endothelium and their association with metastasis related to breast cancer is unknown.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Laboratory of Translational Medicine in Microvascular Regulation, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital; Shandong Provincial Key Laboratory of Medicine in Microvascular Ageing; Laboratory of Future Industry of Gene Editing in Vascular Endothelial Cells of Universities in Shandong Province, Jinan, China.
Cadmium (Cd) is a toxic heavy metal which induces vascular disorders. Previous studies suggest that Cd in the bloodstream affects vascular endothelial cells (ECs), potentially contributing to vascular-related diseases. However, the molecular mechanisms of effects of Cd on ECs remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!