In pediatrics, EEG recordings are performed on patients from the neonatal period up to young adults. This means adapting techniques to many different conditions, concerning not only the patient's age, the need for asepsis and the patient's behavior, but also the environment (e.g. in the laboratory, at the patient's bedside, or in the neonatal intensive care unit [NICU]). Technical requirements depend on age, indication and the type of examination; in infancy, there should be a minimum of 12 EEG electrodes, ECG and respiration recording. In epileptology, surface EMG is also necessary to characterize the type of seizures and refine the diagnosis of epilepsy syndrome, on which physicians will base their treatment choice. The role of the EEG technician is essential because the quality of the recording, its analysis and conclusion will depend on the quality of the technical set-up and the interaction with the child. Sleep is a systematic part of the study up to the age of 5 years for several reasons: sleep EEG yields information on brain maturation; the EEG tracing during wakefulness can contain too many artefacts; and some grapho-elements, key to the diagnosis, only appear during sleep. The time of the examination must be chosen according to the child's usual nap times, possibly after sleep deprivation. Grapho-elements and spatio-temporal organization of the EEG vary with age, and normal variants and unusual aspects are quite wide for any given age; this is why a physician experienced in pediatric EEG should perform the interpretation. This chapter concerns EEG performed in infants, children and adolescents, its technical aspects according to age and indications (general pediatrics, emergency, epilepsy).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neucli.2014.11.008 | DOI Listing |
PLoS One
January 2025
Instituto de Microelectrónica de Sevilla (IMSE-CNM), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Sevilla, Sevilla, Spain.
Epilepsy is a prevalent neurological disorder that affects approximately 1% of the global population. Approximately 30-40% of patients respond poorly to antiepileptic medications, leading to a significant negative impact on their quality of life. Closed-loop deep brain stimulation (DBS) is a promising treatment for individuals who do not respond to medical therapy.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Institute of Neuroscience (IONS), UCLouvain, Brussels, Belgium.
Experiencing music often entails the perception of a periodic beat. Despite being a widespread phenomenon across cultures, the nature and neural underpinnings of beat perception remain largely unknown. In the last decade, there has been a growing interest in developing methods to probe these processes, particularly to measure the extent to which beat-related information is contained in behavioral and neural responses.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Department of Psychology, University of Lübeck, Lübeck, Germany.
Distraction is ubiquitous in human environments. Distracting input is often predictable, but we do not understand when or how humans can exploit this predictability. Here, we ask whether predictable distractors are able to reduce uncertainty in updating the internal predictive model.
View Article and Find Full Text PDFNeurol Ther
January 2025
Department of Rehabilitation Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
J ECT
January 2025
Department of Psychiatry, Central Institute of Psychiatry, Kanke, Ranchi, Jharkhand, India.
Background: Resistant auditory verbal hallucination (AVH) remains a disabling symptom in schizophrenia. Transcranial direct current stimulation (tDCS) and its more targeted variant, high-definition tDCS (HD-tDCS), have shown promising results in reducing AVH. We aimed to determine the effects of adjunctive HD-tDCS on various dimensions of AVH in patients with schizophrenia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!