The influenza virus is surrounded by an envelope composed of a lipid bilayer and integral membrane proteins. Understanding the structural dynamics of the membrane envelope provides biophysical insights into aspects of viral function, such as the wide-ranging survival times of the virion in different environments. We have combined experimental data from X-ray crystallography, nuclear magnetic resonance spectroscopy, cryo-electron microscopy, and lipidomics to build a model of the intact influenza A virion. This is the basis of microsecond-scale coarse-grained molecular dynamics simulations of the virion, providing simulations at different temperatures and with varying lipid compositions. The presence of the Forssman glycolipid alters a number of biophysical properties of the virion, resulting in reduced mobility of bilayer lipid and protein species. Reduced mobility in the virion membrane may confer physical robustness to changes in environmental conditions. Our simulations indicate that viral spike proteins do not aggregate and thus are competent for multivalent immunoglobulin G interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4353694PMC
http://dx.doi.org/10.1016/j.str.2014.12.019DOI Listing

Publication Analysis

Top Keywords

influenza virion
8
reduced mobility
8
virion
6
sneeze dynamic
4
dynamic integrative
4
integrative computational
4
computational model
4
model influenza
4
virion influenza
4
influenza virus
4

Similar Publications

Phlorotannin-Rich Seaweed Extract Inhibits Influenza Infection.

Viruses

December 2024

Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK.

Seaweed-derived compounds are a renewable resource utilised in the manufacturing and food industry. This study focuses on an enriched seaweed extract (ESE) isolated from The ESE was screened for antiviral activity by plaque reduction assays against influenza A/Puerto Rico/8/1934 H1N1 (PR8), A/X-31 H3N2 (X31) and A/England/195/2009 H1N1 (Eng195), resulting in the complete inhibition of infection. Time of addition assays and FACS analysis were used to help determine the modes of action.

View Article and Find Full Text PDF
Article Synopsis
  • CI-qPCR assays provide a viable alternative to traditional cell culture methods for assessing virus viability in wastewater, specifically focusing on human pathogens.
  • The study evaluated three CI-qPCR methods (Crosslinker, TruTiter, and PMAxx) on various viruses like HAdV and SARS-CoV-2, revealing differences in sensitivity and effectiveness between them.
  • Findings suggest that while PMAxx struggled with detecting certain heat-inactivated viruses, both PMAxx and TruTiter successfully identified intact viruses in wastewater, showing promise for improving public health monitoring and response to emerging viral threats.
View Article and Find Full Text PDF

Antiviral Agents: Structural Basis of Action and Rational Design.

Subcell Biochem

December 2024

Department of Biomedical Sciences, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.

During the last forty years, significant progress has been made in the development of novel antiviral drugs, mainly crystallizing in the establishment of potent antiretroviral therapies and the approval of drugs eradicating hepatitis C virus infection. Although major targets of antiviral intervention involve intracellular processes required for the synthesis of viral proteins and nucleic acids, a number of inhibitors blocking virus assembly, budding, maturation, entry, or uncoating act on virions or viral capsids. In this review, we focus on the drug discovery process while presenting the currently used methodologies to identify novel antiviral drugs by means of computer-based approaches.

View Article and Find Full Text PDF

Influenza is a disease of significant morbidity and mortality. The number of anti-influenza drugs is small; many of them stimulate the appearance of resistant strains. This article presents the results of assessing the antiviral activity of 1,2,3-triazole-containing derivatives of alkaloid lupinine for their ability to suppress the reproduction of orthomyxoviruses (influenza viruses: A/Vladivostok/2/09 (H1N1) and A/Almaty/8/98 (H3N2)).

View Article and Find Full Text PDF

Background And Aim: Avian influenza is a global threat to avian species, particularly in developing countries. Recombinant vaccines, including virus-like particles (VLPs), are promising strategies for preventing the spread of the disease. VLPs produced through the self-assembly of viral structural proteins without genomic material mimic native virions and are promising platforms for new vaccines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!