Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The roles of persistent Na(+) currents (INaP) in intrinsic membrane properties were examined in rat substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis using a conventional whole-cell patch clamp technique. In a voltage-clamp mode, riluzole inhibited the slow voltage ramp-induced INaP but had little effect on the peak amplitude of transient Na(+) currents in SG neurons. In a current-clamp mode, most SG neurons exhibited spontaneous action potentials and tonic firing pattern. Riluzole reduced both spontaneous and elicited action potentials in a concentration-dependent manner. The present results suggest that the riluzole-sensitive INaP plays an important role in the excitability of SG neurons and are thus, likely to contribute to the modulation of nociceptive transmission from the orofacial tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2015.02.039 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!