Urinary phase I metabolites of α-pyrrolidinobutiophenone (α-PBP) in humans were investigated by analyzing urine specimens obtained from drug abusers. Unequivocal identification and accurate quantification of major metabolites were realized using gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry with newly synthesized authentic standards. Two major phase I metabolic pathways were revealed: (1) reduction of the ketone group to 1-phenyl-2-(pyrrolidin-1-yl)butan-1-ol (OH-α-PBP, diastereomers) partly followed by conjugation to its glucuronide and (2) oxidation at the 2″-position of the pyrrolidine ring to α-(2″-oxo-pyrrolidino)butiophenone (2″-oxo-α-PBP) via the putative intermediate α-(2″-hydroxypyrrolidino)butiophenone (2″-OH-α-PBP). Of the phase I metabolites retaining the structural characteristics of the parent drug, OH-α-PBP was the most abundant in all specimens examined. Comparison of the phase I metabolism of α-PBP and α-pyrrolidinovalerophenone (α-PVP) suggested a relationship between the aliphatic side chain length and the metabolic pathways in α-pyrrolidinophenones: the shorter aliphatic side chain (1) led to more extensive metabolism via reduction of the ketone group than via the oxidation at the 2″-position of the pyrrolidine ring and (2) influenced the isomeric ratio of a pair of diastereomers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.forsciint.2015.02.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!