The differential microcalorimetry was used to explore an influence of particles of silicon dioxide, and also other high-dispersed oxides (0.05% of masses.) in water suspension of yeast cells on intensification of the process of their fermentation in endogenous metabolic conditions. It was shown that intensification of the processes of the vital activity of yeast microorganisms was observed in the specified interval of the concentration of silicon dioxide hydrosol particles. Mechanisms of interaction between SiO2 particles and a surface of a cellular organism, as well as interaction between SiO2 particles and one of metabolism products--carbon dioxide were studied. It was found out, that Al2O3, TiO2 hydrosols also had a stimulating effect, but it is lower compared to that of SiO2.

Download full-text PDF

Source

Publication Analysis

Top Keywords

yeast cells
8
silicon dioxide
8
interaction sio2
8
sio2 particles
8
[analysis mechanism
4
mechanism intensification
4
intensification fermentation
4
fermentation process
4
process yeast
4
cells suspension
4

Similar Publications

fos genes in mainly invertebrate model systems: A review of commonalities and some diversities.

Cells Dev

January 2025

Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Querétaro, Mexico. Electronic address:

fos genes, transcription factors with a common basic region and leucine zipper domains binding to a consensus DNA sequence (TGA{}TCA), are evolutionarily conserved in eukaryotes. Homologs can be found in many different species from yeast to vertebrates. In yeast, the homologous GCN4 gene is required to mediate "emergency" situations like nutrient deprivation and the unfolded protein response.

View Article and Find Full Text PDF

One of the key events in DNA damage response (DDR) is activation of checkpoint kinases leading to activation of ribonucleotide reductase (RNR) and increased synthesis of deoxyribonucleotide triphosphates (dNTPs), required for DNA repair. Among other mechanisms, the activation of dNTP synthesis is driven by derepression of genes encoding RNR subunits RNR2, RNR3, and RNR4, following checkpoint activation and checkpoint kinase Dun1p-mediated phosphorylation and inactivation of transcriptional repressor Crt1p. We report here that in the absence of genotoxic stress during respiratory growth on nonfermentable carbon source acetate, inactivation of checkpoint kinases results in significant growth defect and alters transcriptional regulation of RNR2-4 genes and genes encoding enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles and gluconeogenesis.

View Article and Find Full Text PDF

Quantitative chromatin protein dynamics during replication origin firing in human cells.

Mol Cell Proteomics

January 2025

Center for Chromosome Stability, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.

Accurate genome duplication requires a tightly regulated DNA replication program, which relies on the fine regulation of origin firing. While the molecular steps involved in origin firing have been determined predominantly in budding yeast, the complexity of this process in human cells has yet to be fully elucidated. Here, we describe a straightforward proteomics approach to systematically analyse protein recruitment to the chromatin during induced origin firing in human cells.

View Article and Find Full Text PDF

The dark side of fluorescent protein tagging - the impact of protein tags on biomolecular condensation.

Mol Biol Cell

January 2025

Department of Biology, Institute of Biochemistry, ETH (Eidgenössische Technische Hochschule) Zürich, 8093 Zürich, Switzerland.

Biomolecular condensation has emerged as an important mechanism to control various cellular processes through the formation of membraneless organelles. Fluorescent protein tags have been extensively used to study the formation and the properties of condensates and , but there is evidence that tags may perturb the condensation properties of proteins. In this study, we carefully assess the effects of protein tags on the yeast DEAD-box ATPase Dhh1, a central regulator of processing bodies (P-bodies), which are biomolecular condensates involved in mRNA metabolism.

View Article and Find Full Text PDF

Unlabelled: Pathogenic strains cause cholera using different mechanisms. O1 and O139 serogroup strains use the toxin-co-regulated pilus (TCP) and cholera toxin (CT) for intestinal colonization and to promote secretory diarrhea, while non-O1/non-O139 serogroup strains are typically non-toxigenic and use alternate virulence factors to cause a clinically similar disease. An O39 serogroup, TCP/CT-negative strain, named AM-19226, uses a type III secretion system (T3SS) to translocate more than 10 effector proteins into the host cell cytosol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!