Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The tyrosine kinase MET, a receptor for hepatocyte growth factor, is a key regulator for normal development and organ renewal via stem cell maintenance. Dysregulated MET signaling contributes to tumor progression and metastasis and is considered a potent therapeutic target for a growing number of malignancies. Toward that goal it is critical to develop high-throughput assays to identify candidate regulators for the termination of MET signaling. We describe here a rapid and efficient method for identifying cellular factors required for MET ubiquitination, which utilizes high-throughput RNA interference screening (HT-siRNA) with a receptor internalization assay and an In-Cell ELISA in a 96-well format. The assay is amenable to a large array of cell surface proteins as well as genome-wide siRNA libraries, with high signal-to-background ratio and low well-to-well variability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-2309-0_26 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!