The wavepacket dynamics of CS2 after photoexcitation to the (1)B2((1)Σu(+)) state at 198 nm are studied by time-resolved photoelectron imaging using sub-20 fs 159 nm pulses, which enable single photon ionization from the entire region of the (1)B2 potential energy surface. The time-energy map of the photoelectron intensity reveals vibrational motions along the symmetric stretching and bending coordinates. The time-energy map of the photoelectron anisotropy parameter exhibits time-evolution within single oscillation periods of the ν1 and ν2 modes, which is attributed to variation of the excited state electronic character along these vibrational coordinates. The initially populated (1)B2 state evolves with two time constants of 107 and 394 fs.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4907749DOI Listing

Publication Analysis

Top Keywords

wavepacket dynamics
8
1b21Σu+ state
8
photoelectron imaging
8
time-energy map
8
map photoelectron
8
observation wavepacket
4
dynamics 1b21Σu+
4
state
4
state cs2
4
cs2 sub-20
4

Similar Publications

The quantum-well-like two-dimensional lead-halide perovskites exhibit strongly confined excitons due to the quantum confinement and reduced dielectric screening effect, which feature intriguing excitonic effects. The ionic nature of the perovskite crystal and the "softness" of the lattice induce the complex lattice dynamics. There are still open questions about how the soft lattices decorate the nature of excitons in these hybrid materials.

View Article and Find Full Text PDF

We present two methods for computing the dynamic structure factor for warm dense hydrogen without invoking either the Born-Oppenheimer approximation or the Chihara decomposition, by employing a wave-packet description that resolves the electron dynamics during ion evolution. First, a semiclassical method is discussed, which is corrected based on known quantum constraints, and second, a direct computation of the density response function within the molecular dynamics. The wave-packet models are compared to PIMC and DFT-MD for the static and low-frequency behavior.

View Article and Find Full Text PDF

Conjugated diene molecules are highly reactive upon photoexcitation and can relax through multiple reaction channels that depend on the position of the double bonds and the degree of molecular rigidity. Understanding the photoinduced dynamics of these molecules is crucial for establishing general rules governing the relaxation and product formation. Here, we investigate the femtosecond time-resolved photoinduced excited-state structural dynamics of ,-1,3-cyclooctadiene, a large-flexible cyclic conjugated diene molecule, upon excitation with 200 nm using mega-electron-volt ultrafast electron diffraction and trajectory surface hopping dynamics simulations.

View Article and Find Full Text PDF

Jahn-Teller Effect on CFI Photodissociation Dynamics.

J Chem Theory Comput

December 2024

State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China.

The Jahn-Teller (JT) effect, as a spontaneous symmetry-breaking mechanism arising from the coupling between electronic and nuclear degrees of freedom, is a widespread phenomenon in molecular and condensed matter systems. Here, we investigate the influence of the JT effect on the photodissociation dynamics of CFI molecules. Based on ab initio calculation, we obtain the three-dimensional potential energy surfaces for and states and establish a diabatic Hamiltonian model to study the wavepacket dynamics in the CFI photodissociation process.

View Article and Find Full Text PDF

The fate of thymine upon excitation by ultraviolet radiation has been the subject of intense debate. Today, it is widely believed that its ultrafast excited state gas phase decay stems from a radiationless transition from the bright ππ* state to a dark nπ* state. However, conflicting theoretical predictions have made the experimental data difficult to interpret.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!