Oleic (cis9-18:1), linoleic (cis9,cis12-18:2) and α-linolenic (cis9,cis12,cis15-18:3) acids are well described substrates of the Δ6-desaturase encoded by the mammalian fatty acid desaturase 2 (FADS2) gene. In addition, at least 9 other very structurally different fatty acids have been shown to be Δ6- or even Δ8-desaturated by the FADS2 protein. A better characterization of the substrate specificity of this enzyme is therefore needed. By using commercial cis9-18:1 and chemically synthesized cis12- and cis15-18:1 (sharing the n-6 double bond with 18:2 n-6 and the n-3 double bond with 18:3 n-3, respectively), we tried to decrypt the fatty acid structure driving the FADS2 substrate affinity. We first showed that both recombinant and native rat FADS2 were able to Δ6-desaturate not only the cis9- but also the cis12- and cis15-18:1 isomers. Next, the inhibitory effect of increasing concentrations of each 18:1 isomer was investigated in vitro on the Δ6-desaturation of α-linolenic acid. At equimolar inhibitor/substrate ratio (60 μM), the cis9-18:1 exhibited a significantly higher inhibition (25%) than the cis12- (8%) and cis15-18:1 (5%). This study shows that a single cis double bond in 12- or 15-position in 18:1 is enough to make them low Δ6-desaturable substrates. If a preexisting cis9-double bond is not absolutely required for the Δ6-desaturation of octadecenoic acids, its presence is however crucial to explain the higher enzyme affinity. Compared with oleic acid, the additional presence of a cis12-double bond in linoleic acid increased its inhibitory effect on the Δ6-desaturation of α-linolenic acid at low concentration (30 μM) but not at higher concentrations (60 and 120 μM). In this classification of the decreasing impact of the double bond when it comes closer to the methyl end of octadecenoic acids, the cis11-18:1 (cis-vaccenic acid) should be considered apart since it is itself not Δ6-desaturated but still a good competitive inhibitor of the α-linolenic acid Δ6-desaturation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemphyslip.2015.02.001 | DOI Listing |
Int J Biol Macromol
January 2025
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China. Electronic address:
This study investigated the effects of Chlamydomonas reinhardtii polysaccharides (CRPs) on retarding the retrogradation of japonica rice starch (JS) and glutinous rice starch (GS). Structure characterization revealed that CRPs, with an average molecular weight of 505 kDa, mainly consisted of glucose, mannose, and galactose and featured a triple-helix structure. CRPs could reduce the storage modulus increment of JS during the cooling process by interacting with amylose, thereby inhibiting gel network formation.
View Article and Find Full Text PDFBioorg Chem
January 2025
N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Avenue 9, Novosibirsk 630090, Russia. Electronic address:
Eudesmane-type sesquiterpene lactone isoalantolactone 1 is of great interest due to its availability, biological activity and synthetic application. Respective series of original spirocyclic (11S,5') (1,2,3-triazoline-eudesma-4,15-enolides) and (11S)-aziridine-eudesma-4,15-enolides were efficiently synthesized via a chemoselective 1,3-dipolar cycloaddition reaction of organic azides to the exocyclic double bond of the lactone ring of isoalantolactone or 13E-(aryl)isoalantolactones by heating in DMF or toluene. The thermal reactions of isoalantolactone with benzyl azide, 2-azidoethanol, or n-butyl azide in 2-methoxyethanol afforded 13-(alkyamino)isoalantolactones formed as a mixture of (Z) and (E)-isomers.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
Understanding and effectively controlling molecular conformational changes are essential for developing responsive and dynamic molecular systems. Here, we report that an oriented external electric field (OEEF) is an effective catalyst for the cis-trans isomerization of stiff-stilbene, a key component of overcrowded alkene-based rotary motors. This reversible isomerization occurs under ambient conditions, is free from side reactions, and has been verified using ultraperformance liquid chromatography and UV-vis absorption spectroscopy.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
We report nonadiabatic dynamics computations on CH initiated on a coherent superposition of the five lowest cationic states, employing the Quantum Ehrenfest method. In addition to the totally symmetric carbon-carbon double bond stretch and carbon-hydrogen stretches, we see that the three non-totally symmetric modes become stimulated; torsion and three different CH stretching patterns. Thus, a coherent superposition of states, of the type involved in an attochemistry experiment, leads to the stimulation of specific non-totally symmetric motions.
View Article and Find Full Text PDFMolecules
January 2025
School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China.
Efficient access to pyranoisoquinoline derivatives via rhodium-catalyzed double C-H functionalization of phenyl oxadiazoles and diazo compounds has been developed. Two C-C bonds and one C-O and C-N bond formation was realized by this tandem reaction, along with the formation of two heterocycles, affording diversified pyran-fused isoquinolines in moderate to good yields with broad functional group tolerance under mild reaction conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!