Lysophosphatidic acid receptor 1 antagonist ki16425 blunts abdominal and systemic inflammation in a mouse model of peritoneal sepsis.

Transl Res

Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA; Vascular Medical Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA. Electronic address:

Published: July 2015

Lysophosphatidic acid (LPA) is a bioactive lipid mediator of inflammation via the LPA receptors 1-6. We and others have previously described proinflammatory and profibrotic activities of LPA signaling in bleomycin- or lipopolysaccharide (LPS)-induced pulmonary fibrosis or lung injury models. In this study, we investigated if LPA signaling plays a role in the pathogenesis of systemic sepsis from an abdominal source. We report here that antagonism of the LPA receptor LPA1 with the small molecule ki16425 reduces the severity of abdominal inflammation and organ damage in the setting of peritoneal endotoxin exposure. Pretreatment of mice with intraperitoneal ki16425 eliminates LPS-induced peritoneal neutrophil chemokine and cytokine production, liver oxidative stress, liver injury, and cellular apoptosis in visceral organs. Mice pretreated with ki16425 are also protected from LPS-induced mortality. Tissue myeloperoxidase activity is not affected by LPA1 antagonism. We have shown that LPA1 is associated with LPS coreceptor CD14 and the association is suppressed by ki16425. LPS-induced phosphorylation of protein kinase C δ (PKCδ) and p38 mitogen-activated protein kinase (p38 MAPK) in liver cells and interleukin 6 production in Raw264 cells are likewise blunted by LPA1 antagonism. These studies indicate that the small molecule inhibitor of LPA1, ki16425, suppresses cytokine responses and inflammation in a peritoneal sepsis model by blunting downstream signaling through the LPA1-CD14-toll-like receptor 4 receptor complex. This anti-inflammatory effect may represent a therapeutic strategy for the treatment of systemic inflammatory responses to infection of the abdominal cavity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458421PMC
http://dx.doi.org/10.1016/j.trsl.2015.01.008DOI Listing

Publication Analysis

Top Keywords

lysophosphatidic acid
8
peritoneal sepsis
8
lpa signaling
8
small molecule
8
lpa1 antagonism
8
protein kinase
8
ki16425
6
lpa
5
lpa1
5
receptor
4

Similar Publications

Background: Sarcoglycanopathies are muscle dystrophies caused by mutations in the genes encoding sarcoglycans (α, β, γ, and δ) that can destabilize the dystrophin-associated glycoprotein complex at the sarcolemma, leaving muscle fibers vulnerable to damage after contraction, followed by inflammatory and fibrotic responses and resulting in muscle weakness and atrophy. Two signaling pathways have been implicated in fibrosis and inflammation in various tissues: autotaxin/lysophosphatidic acid (ATX-LPA) and yes-associated protein 1/transcriptional co-activator with PDZ-binding motif (YAP/TAZ). LPA, synthesized by ATX, can act as a pleiotropic molecule due to its multiple receptors.

View Article and Find Full Text PDF

Promoted Translocation of Perfluorooctanoic Acid across the Blood-Retinal Barrier due to its Inhibition of Tight Junction Assembly by Antagonizing LPAR1.

Environ Sci Technol

March 2025

Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.

Eye health is becoming a significant public health concern, and a recent epidemiological investigation suggested that perfluorooctanoic acid (PFOA), a so-called forever chemical, was correlated with decreased human visual acuity; however, it remains unknown whether PFOA can pass through the blood-retinal barrier (BRB) to cause visual toxicity. In this study, the mice received a 28-day subchronic oral exposure to PFOA. The results of spatial mass spectrometry imaging indicated that the eye-enriched PFOA dispersed into the subretina primarily through the outer BRB (oBRB), which subsequently resulted in significantly increased apoptosis and decreased thickness of multiple oBRB-associated layers.

View Article and Find Full Text PDF

Background: Migraine is the most common neurological disorder and the second most disabling human condition. Autotaxin (ATX) is a plasma enzyme that leads to the formation of lysophosphatidic acid (LPA), which is involved in different functions involved in migraine, such as vascular tone control, inflammation, neuronal excitation, endothelial dysfunction, and neuropathic pain, among others. Most patients with migraine are females and, interestingly, ATX is physiologically higher in the serum of females compared to males.

View Article and Find Full Text PDF

Phospholipids and Sphingolipids in Osteoarthritis.

Biomolecules

February 2025

Laboratory for Experimental Orthopaedics, Department of Orthopaedics and Orthopaedic Surgery, Justus Liebig University, 35392 Giessen, Germany.

Many studies now emphasize the intricate relationship between lipid metabolism and osteoarthritis (OA), a leading cause of disability. This narrative review examines alterations in the levels of phospholipids (PLs) and sphingolipids (SLs) in synovial fluid (SF), plasma, serum, and articular tissues; discusses their role in joint lubrication, inflammation, and cartilage degradation; and describes their potential as diagnostic markers and therapeutic targets. Key findings include stage-dependent elevated levels of specific PLs and SLs in the SF, blood, and tissue of OA patients, implicating them as possible biomarkers of disease severity and progression.

View Article and Find Full Text PDF

Possible Involvement of Lysophospholipids in Severe Asthma as Novel Lipid Mediators.

Biomolecules

January 2025

Department of Infectious Diseases and Respiratory Medicine, Fukushima Medical University Aizu Medical Center, 21-2 Maeda, Tanisawa, Kawahigashi, Aizuwakamatsu 969-3492, Japan.

In severe asthma, symptoms are unstable despite intensive treatment based on high doses of inhaled corticosteroids and on-demand use of oral corticosteroids. Although, recently, various biological agents related to Th2 cytokines have been added to intensive controller medications for severe asthma, a significant progress has not been observed in the management for symptoms (dyspnea, wheezing and cough). Medical treatment focused on Type 2 inflammation is probably insufficient to maintain good long-term management for severe asthma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!