Polysialic acid (polySia) is expressed on several malignant tumors of neuroendocrine origin, including small cell lung cancer. In this study, we investigated the therapeutic efficacy of tumor-directed T-cell responses, elicited by polySia-retargeted oncolytic adenovirus infection, in an orthotopic murine model of disseminated polySia-positive lung cancer. In several cell lines, we demonstrated highly polySia-selective retargeting of adenoviral infection using a bispecific adapter comprising the ectodomain of the coxsackievirus/adenovirus receptor and a polySia-recognizing single-chain antibody domain. PolySia-dependent systemic infection in vivo facilitated effective uptake of viruses in subcutaneous polySia-expressing human tumors, whereas hepatic viral load and hepatotoxicity were significantly reduced. The impact and nature of antitumoral immune responses triggered by systemic delivery of polySia-retargeted oncolytic adenoviruses were investigated in an orthotopic model of disseminated lung cancer. Interestingly, improved transduction by polySia-retargeted oncolytic adenoviruses led to CD45-positive cell infiltrates in close association with large lytic areas. Consistently, enhanced tumor regression and prolonged survival was only observed in immunocompetent mice, but not in T-cell-deficient mice. To investigate whether improved systemic infection by polySia retargeting would elicit a tumor-specific T-cell response, we screened the used lung cancer cells for mutated oncogenes by complete exon sequencing. In agreement with our other results, only retargeted oncolysis was able to induce a significant response specific for the tumor-associated neoepitope Gsta2-Y9H. In conclusion, we demonstrated that effective retargeting of oncolytic adenovirus against polySia-expressing tumors elicits an effective tumor-directed T-cell response after systemic virus delivery and facilitates therapy of disseminated lung cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/2326-6066.CIR-14-0124-T | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!