Human intradermal components contain important clinical information beneficial to the field of immunology and disease diagnosis. Although microneedles have shown great potential to act as probes to break the human skin barrier for the minimally invasive measurement of intradermal components, metal microneedles that include stainless steel could cause the following problems: (1) sharp waste production, and (2) contamination due to reuse of microneedles especially in developing regions. In this study, we fabricate agarose microneedles coated with a layer of silver (Ag) and demonstrate their use as a probe for the realization of intradermal surface enhanced Raman scattering measurements in a set of skin-mimicking phantoms. The Ag-coated agarose microneedle quantifies a range of glucose concentrations from 5 to 150 mM inside the skin phantoms with a root-mean-square error of 5.1 mM within 10 s. The needle is found enlarged by 53.9% after another 6 min inside the phantom. The shape-changing capability of this agarose microneedle ensures that there use of these microneedles is impossible, thus avoiding sharp waste production and preventing needle contamination,which shows the great potential for safe and effective needle-based measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1117/1.JBO.20.6.061102 | DOI Listing |
ACS Sens
December 2024
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
Detection of slight pH changes in skin interstitial fluid (ISF) is crucial yet challenging for studying pathological processes and understanding personal health conditions. In this work, we construct an i-motif DNA based fluorescent ratiometric microneedle sensing patch (IFR-pH MN patch) strategy that enables minimally invasive, high-resolution, and sensitive transdermal monitoring of small pH variations in ISF. The IFR-pH MN patch with advanced integration of both ISF sampling and pH sensing was fabricated from the cross-linking of gelatin methacryloyl and methacrylated hyaluronic acid, wrapping with pH-sensitive hairpin-containing i-motif DNA based fluorescent ratiometric probes in the matrix.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
Sampling of interstitial fluid (ISF) using microneedle (MN) patch offers a pain-free minimally invasive alternative to syringe needle-based blood sample collection. However, there is a challenge in the development of MN patch that provides swelling behavior with sufficient mechanical strength for skin penetration. Here, we report fabrication of MN patch made of biopolymer composite containing iota-carrageenan, gelatin, and polyethylene glycol.
View Article and Find Full Text PDFTalanta
December 2024
Major in Materials Science and Engineering, Hallym University, 1 Hallymdaehak-gil, Chuncheon-si, Gangwon-do, 24252, Republic of Korea; Integrative Materials Research Institute, Hallym University, 1 Hallymdaehak-gil, Chuncheon-si, Gangwon-do, 24252, Republic of Korea; Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, 1 Hallymdaehak-gil, Chuncheon-si, Gangwon-do, 24252, Republic of Korea. Electronic address:
In this study, we present the development of an innovative electrochemical biosensor integrated into a microneedle-based system for non-invasive and sensitive quantification of cholesterol levels in interstitial fluid (ISF). The biosensor employs a graphene-based electrode with a polyelectrolyte interlayer to immobilize cholesterol oxidase (ChOx), enabling selective cholesterol detection. Graphene oxide is electrochemically reduced to form a conductive layer, and PANI is chosen as the optimal polyelectrolyte for ChOx immobilization.
View Article and Find Full Text PDFBiomater Adv
November 2024
Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, United Kingdom. Electronic address:
This study aimed to prepare and assess active microneedle (MN) patches based on a novel biomaterial and their effective coupled (physical and electrical) transdermal delivery of a model drug (Linezoid). Modified MN patches (e.g.
View Article and Find Full Text PDFDrug Deliv Transl Res
August 2024
Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, Newcastle, NE1 8ST, UK.
Transdermal drug delivery provides therapeutic benefits over enteric or injection delivery because its transdermal routes provide more consistent concentrations of drug and avoid issues of drugs affecting kidneys and liver functions. Many technologies have been evaluated to enhance drug delivery through the relatively impervious epidermal layer of the skin. However, precise delivery of large hydrophilic molecules is still a great challenge even though microneedles or other energized (such as electrical, thermal, or ultrasonic) patches have been used, which are often difficult to be integrated into small wearable devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!