The development of novel non-nucleoside inhibitors (NNRTIs) with activity against variants of HIV reverse transcriptase (RT) is crucial for overcoming treatment failure. The NNRTIs bind in an allosteric pocket in RT ∼10 Å away from the active site. Earlier analogues of the catechol diether compound series have picomolar activity against HIV strains with wild-type RT but lose potency against variants with single Y181C and double K103N/Y181C mutations. As guided by structure-based and computational studies, removal of the 5-Cl substitution of compound 1 on the catechol aryl ring system led to a new analogue compound 2 that maintains greater potency against Y181C and K103N/Y181C variants and better solubility (510 μg/mL). Crystal structures were determined for wild-type, Y181C, and K103N/Y181C RT in complex with both compounds 1 and 2 to understand the structural basis for these findings. Comparison of the structures reveals that the Y181C mutation destabilizes the binding mode of compound 1 and disrupts the interactions with residues in the pocket. Compound 2 maintains the same conformation in wild-type and mutant structures, in addition to several interactions with the NNRTI binding pocket. Comparison of the six crystal structures will assist in the understanding of compound binding modes and future optimization of the catechol diether series.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378236 | PMC |
http://dx.doi.org/10.1021/jm501908a | DOI Listing |
Lancet HIV
January 2025
Stichting HIV Monitoring, Amsterdam, Netherlands; Department of Infectious Diseases, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands.
Background: Real-world data showing the long-term effectiveness of long-acting injectable cabotegravir and rilpivirine are scarce. We assessed the effectiveness of cabotegravir and rilpivirine in all individuals who switched to cabotegravir and rilpivirine in the Netherlands.
Methods: We used data from the ATHENA cohort, an ongoing observational nationwide HIV cohort in the Netherlands.
Viruses
December 2024
Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal.
The high genetic variability of HIV-1 and the emergence of transmitted drug resistance (TDR) can impact treatment efficacy. In this study, we investigated the prevalent HIV-1 genotypes and drug-resistance-associated mutations in drug-naïve HIV-1 individuals in Cabo Verde. The study, conducted between 2018 and 2019, included drug-naïve HIV-1 individuals from the São Vicente, Boa Vista, Fogo, and Santiago islands.
View Article and Find Full Text PDFViruses
December 2024
1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece.
People with HIV (PWH) have an elevated risk of cardiovascular disease compared to those without HIV. This study aimed to investigate the relative serum expression of microRNAs (miRNAs) associated with arterial stiffness, a significant marker of cardiovascular disease. A total of 36 male PWH and 36 people without HIV, matched for age, body mass index, pack years, and dyslipidemia, were included in the study.
View Article and Find Full Text PDFViruses
November 2024
Department of Virology & Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, India.
The biological characteristics of early transmitted/founder (T/F) variants are crucial factors for viral transmission and constitute key determinants for the development of better therapeutics and vaccine strategies. The present study aimed to generate T/F viruses and to characterize their biological properties. For this purpose, we constructed 18 full-length infectious molecular clones (IMCs) of HIV from recently infected infants.
View Article and Find Full Text PDFViruses
November 2024
Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé P.O. Box 3077, Cameroon.
Dual therapies (DT) combining integrase strand transfer inhibitors (INSTIs) with second-generation non-nucleoside reverse transcriptase inhibitors (2nd-Gen-NNRTIs) offer new possibilities for HIV treatment to improve adherence. However, drug resistance associated mutations (RAMs) to prior antiretrovirals may jeopardize the efficacy of DT. We herein describe the predicted efficacy of DT combining INSTIs + 2nd-Gen-NNRTI following treatment failure among Cameroonian patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!