We investigated the phytoremediation potential of Elodea nuttallii to remove rare earth metals from contaminated water. The laboratory experiments were designed to assess the responses induced by lanthanum (5-20mgL(-1)) in E. nuttallii over a period of 7 days. The results showed that most La (approximately 85%) was associated with the cell wall. The addition of La to the culture medium reduced the concentration of K, Ca, Cu, Mg, and Mn. However, O2(·-) levels increased with a concomitant increase in the malondialdehyde (MDA) concentration as the La concentration increased, which indicated that the cells were under oxidative stress. Significant reductions in the levels of chlorophyll (Chl) a, b, and carotenoids (Car) were observed in a concentration-dependent manner. However, the levels of reduced glutathione (GSH), total non-protein thiols (TNP-SH) and phytochelatins (PCs) increased for all La concentrations. The results suggested that La was toxic to E. nuttallii because it induced oxidative stress and disturbed mineral uptake. However, E. nuttallii was able to combat La induced damage via an immobilization mechanism, which involved the cell wall and the activation of non-enzymatic antioxidant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2015.02.013DOI Listing

Publication Analysis

Top Keywords

elodea nuttallii
8
cell wall
8
oxidative stress
8
nuttallii
5
oxidative effects
4
effects nutrients
4
nutrients metabolic
4
metabolic changes
4
changes aquatic
4
aquatic macrophyte
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!