Penicillium digitatum is the most destructive postharvest pathogen of citrus fruits, causing fruit decay and economic loss. Additionally, control of the disease is further complicated by the emergence of drug-resistant strains due to the extensive use of triazole antifungal drugs. In this work, an orthologus gene encoding a putative sterol regulatory element-binding protein (SREBP) was identified in the genome of P. digitatum and named sreA. The putative SreA protein contains a conserved domain of unknown function (DUF2014) at its carboxyl terminus and a helix-loop-helix (HLH) leucine zipper DNA binding domain at its amino terminus, domains that are functionally associated with SREBP transcription factors. The deletion of sreA (ΔsreA) in a prochloraz-resistant strain (PdHS-F6) by Agrobacterium tumefaciens-mediated transformation led to increased susceptibility to prochloraz and a significantly lower EC50 value compared with the HS-F6 wild-type or complementation strain (COsreA). A virulence assay showed that the ΔsreA strain was defective in virulence towards citrus fruits, while the complementation of sreA could restore the virulence to a large extent. Further analysis by quantitative real-time PCR demonstrated that prochloraz-induced expression of cyp51A and cyp51B in PdHS-F6 was completely abolished in the ΔsreA strain. These results demonstrate that sreA is a critical transcription factor gene required for prochloraz resistance and full virulence in P. digitatum and is involved in the regulation of cyp51 expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336317PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117115PLOS

Publication Analysis

Top Keywords

sterol regulatory
8
regulatory element-binding
8
element-binding protein
8
penicillium digitatum
8
required prochloraz
8
prochloraz resistance
8
resistance full
8
full virulence
8
citrus fruits
8
Δsrea strain
8

Similar Publications

Emerging evidence indicates a close relationship between gut microbiota and fatty liver disease. It has been suggested that gut microbiota modulation with probiotics ameliorates fatty liver disease in rodents and humans, yet it remains unclear whether the same results will also be obtained in poultry. The aim of this study was to investigate whether a mixture of probiotics supplemented after hatching can prevent CORT-induced fatty liver disease in broilers, and to determine how such effects, if any, are associated with hepatic de novo lipogenesis and gut microbiota composition.

View Article and Find Full Text PDF

Low-density lipoprotein cholesterol (LDL-C) is a well-established risk factor for cardiovascular disease, and it plays a causal role in the development of atherosclerosis. Genome-wide association studies (GWASs) have successfully identified hundreds of genetic variants associated with LDL-C. Most of these risk loci fall in non-coding regions of the genome, and it is unclear how these non-coding variants affect circulating lipid levels.

View Article and Find Full Text PDF

Photosynthesis, which is the foundation of crop growth and development, is accompanied by complex transcriptional regulatory mechanisms. Research has established that brassinosteroids (BRs) play a role in regulating plant photosynthesis, with the majority of research focusing on the physiological level and regulation of rate-limiting enzymes in the dark reactions of photosynthesis. However, studies on their effects on maize photosynthesis, specifically on light-harvesting antenna proteins, have yet to be conducted.

View Article and Find Full Text PDF

Effects of Supplementation on Growth Performance, Hepatic Lipid Metabolism, and mRNA Expression of Lipid Metabolism Genes and Intestinal Flora in Geese.

Animals (Basel)

January 2025

Heilongjiang Provinal Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in Cold Region, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.

The effects of () at a concentration of 1.0 × 10 CFU/mL on growth performance, hepatic lipid metabolism, and mRNA expression related to lipid metabolism, intestinal morphology, and intestinal flora were investigated in geese. A total of 60 male geese, aged 30 days and of similar weight, were randomly assigned to 2 groups.

View Article and Find Full Text PDF

Bisphenol S Induces Lipid Metabolism Disorders in HepG2 and SK-Hep-1 Cells via Oxidative Stress.

Toxics

January 2025

Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China.

Bisphenol S (BPS) is a typical endocrine disruptor associated with obesity. To observe BPS effects on lipid metabolism in HepG2 and SK-Hep-1 human HCC cells, a CCK-8 assay was used to assess cell proliferation in response to BPS, and the optimal concentration of BPS was selected. Biochemical indices such as triglyceride (TG) and total cholesterol (T-CHO), and oxidative stress indices such as malondialdehyde (MDA) and catalase (CAT) were measured.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!