Quantum storage of orbital angular momentum entanglement in an atomic ensemble.

Phys Rev Lett

Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

Published: February 2015

Constructing a quantum memory for a photonic entanglement is vital for realizing quantum communication and network. Because of the inherent infinite dimension of orbital angular momentum (OAM), the photon's OAM has the potential for encoding a photon in a high-dimensional space, enabling the realization of high channel capacity communication. Photons entangled in orthogonal polarizations or optical paths had been stored in a different system, but there have been no reports on the storage of a photon pair entangled in OAM space. Here, we report the first experimental realization of storing an entangled OAM state through the Raman protocol in a cold atomic ensemble. We reconstruct the density matrix of an OAM entangled state with a fidelity of 90.3%±0.8% and obtain the Clauser-Horne-Shimony-Holt inequality parameter S of 2.41±0.06 after a programed storage time. All results clearly show the preservation of entanglement during the storage.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.114.050502DOI Listing

Publication Analysis

Top Keywords

orbital angular
8
angular momentum
8
atomic ensemble
8
entangled oam
8
oam
5
quantum storage
4
storage orbital
4
momentum entanglement
4
entanglement atomic
4
ensemble constructing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!