Cancer cell-specific oligopeptides selected by an integrated microfluidic system from a phage display library for ovarian cancer diagnosis.

Theranostics

1. Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan ; 2. Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan ; 3. Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan.

Published: October 2015

Ovarian cancer is one of the leading causes of female mortality worldwide. Unfortunately, there are currently few high-specificity candidate oligopeptide targeting agents that can be used for early diagnosis of this cancer. It has been suggested that cancer-specific oligopeptides could be screened from a phage display library. However, conventional methods are tedious, labor-intensive, and time consuming. Therefore, a novel, integrated microfluidic system was developed to automate the entire screening process for ovarian cancer cell-specific oligopeptides. An oligopeptide screened with microfluidic chip-based technique was demonstrated to have high affinity to ovarian cancer cells and demonstrated relatively low binding to other cancer cells, indicating a high specificity. Furthermore, the developed method consumed relatively low volumes of samples and reagents; only 70 μL of reactant was used within the whole experimental process. Each panning process was also significantly shortened to only 7.5 hours. Therefore, the screened oligopeptide could be used to isolate ovarian cancer cells in a rapid manner, thus greatly expediting the diagnosis and its application as oligopeptide targeting agent for theranostics of this cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4329505PMC
http://dx.doi.org/10.7150/thno.10891DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
20
cancer cells
12
cancer
9
cancer cell-specific
8
cell-specific oligopeptides
8
integrated microfluidic
8
microfluidic system
8
phage display
8
display library
8
oligopeptide targeting
8

Similar Publications

Background: Dermatomyositis is a chronic inflammatory condition affecting muscles and skin, often associated with an increased risk of cancer. Specific autoantibodies, including anti-TIF1 (Transcription Intermediary Factor 1), have been linked to this risk. We present a case of dermatomyositis in a male patient positive for anti-TIF1 antibodies, subsequently diagnosed with squamous cell carcinoma of the tonsil, a novel association not previously documented.

View Article and Find Full Text PDF

[Analysis of Factors That Promote Awareness of Breast MRI Surveillance for Carriers of Hereditary Breast Cancer Risk Genes ( BRCA1/2)].

Nihon Hoshasen Gijutsu Gakkai Zasshi

January 2025

Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University.

Purpose: Hereditary breast and ovarian cancers (HBOC) carry a high risk of breast cancer, and detailed screening with contrast-enhanced breast MRI (breast MRI surveillance) is recommended. With the increase in the number of individuals diagnosed with HBOC, the demand for breast MRI surveillance is also rising. However, the current system is inadequate, with factors such as lack of knowledge and indifference among healthcare professionals, and insufficient understanding of breast MRI surveillance being cited.

View Article and Find Full Text PDF

Background: The pathogenesis of ovarian cancer (OvCa) involves a complex interplay of genetic, environmental, and hormonal factors. With the in-depth exploration of tumor ecosystem, exosomes can mediate the immunological status of tumor microenvironment (TME). Therefore, we aimed to recognize the tumor-derived exosomes (TEXs) which can distinguish the immune-hot and cold tumors and reflect the immunotherapeutic responses.

View Article and Find Full Text PDF

OCDet: A comprehensive ovarian cell detection model with channel attention on immunohistochemical and morphological pathology images.

Comput Biol Med

January 2025

Department of Pathology, Peking University Health Science Center, 38 College Road, Haidian, Beijing, 100191, China; Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing, 100191, China. Electronic address:

Background: Ovarian cancer is among the most lethal gynecologic malignancy that threatens women's lives. Pathological diagnosis is a key tool for early detection and diagnosis of ovarian cancer, guiding treatment strategies. The evaluation of various ovarian cancer-related cells, based on morphological and immunohistochemical pathology images, is deemed an important step.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!