The SALMFamides are a family of neuropeptides that act as muscle relaxants in echinoderms. Analysis of genome/transcriptome sequence data from the sea urchin Strongylocentrotus purpuratus (Echinoidea), the sea cucumber Apostichopus japonicus (Holothuroidea), and the starfish Patiria miniata (Asteroidea) reveals that in each species there are two types of SALMFamide precursor: an L-type precursor comprising peptides with a C-terminal LxFamide-type motif and an F-type precursor solely or largely comprising peptides with a C-terminal FxFamide-type motif. Here, we have identified transcripts encoding SALMFamide precursors in the brittle star Ophionotus victoriae (Ophiuroidea) and the feather star Antedon mediterranea (Crinoidea). We have also identified SALMFamide precursors in other species belonging to each of the five echinoderm classes. As in S. purpuratus, A. japonicus, and P. miniata, in O. victoriae there is one L-type precursor and one F-type precursor. However, in A. mediterranea only a single SALMFamide precursor was found, comprising two peptides with a LxFamide-type motif, one with a FxFamide-type motif, five with a FxLamide-type motif, and four with a LxLamide-type motif. As crinoids are basal to the Echinozoa (Holothuroidea + Echinoidea) and Asterozoa (Asteroidea + Ophiuroidea) in echinoderm phylogeny, one model of SALMFamide precursor evolution would be that ancestrally there was a single SALMFamide gene encoding a variety of SALMFamides (as in crinoids), which duplicated in a common ancestor of the Echinozoa and Asterozoa and then specialized to encode L-type SALMFamides or F-type SALMFamides. Alternatively, a second SALMFamide precursor may remain to be discovered or may have been lost in crinoids. Further insights will be obtained if SALMFamide receptors are identified, which would provide a molecular basis for experimental analysis of the functional significance of the "cocktails" of SALMFamides that exist in echinoderms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4313774PMC
http://dx.doi.org/10.3389/fendo.2015.00002DOI Listing

Publication Analysis

Top Keywords

salmfamide precursor
16
comprising peptides
12
precursor
9
precursor evolution
8
sequence data
8
salmfamide
8
l-type precursor
8
precursor comprising
8
peptides c-terminal
8
lxfamide-type motif
8

Similar Publications

Neuropeptides are one of the largest and most diverse families of signaling molecules in animals and, accordingly, they regulate many physiological processes and behaviors. Genome and transcriptome sequencing has enabled the identification of genes encoding neuropeptide precursor proteins in species from a growing variety of taxa, including bilaterian and non-bilaterian animals. Of particular interest are deuterostome invertebrates such as the phylum Echinodermata, which occupies a phylogenetic position that has facilitated reconstruction of the evolution of neuropeptide signaling systems in Bilateria.

View Article and Find Full Text PDF

Background: Kisspeptins are neuropeptides that regulate reproductive maturation in mammals via G-protein-coupled receptor-mediated stimulation of gonadotropin-releasing hormone secretion from the hypothalamus. Phylogenetic analysis of kisspeptin-type receptors indicates that this neuropeptide signaling system originated in a common ancestor of the Bilateria, but little is known about kisspeptin signaling in invertebrates.

Results: Contrasting with the occurrence of a single kisspeptin receptor in mammalian species, here, we report the discovery of an expanded family of eleven kisspeptin-type receptors in a deuterostome invertebrate - the starfish Asterias rubens (phylum Echinodermata).

View Article and Find Full Text PDF

The sea cucumber Apostichopus japonicus is a foodstuff with very high economic value in China, Japan and other countries in south-east Asia. It is at the heart of a multibillion-dollar industry and to meet demand for this product, aquaculture methods and facilities have been established. However, there are challenges associated with optimization of reproduction, feeding and growth in non-natural environments.

View Article and Find Full Text PDF

Molluscan pedal peptides (PPs) and arthropod orcokinins (OKs) are prototypes of a family of neuropeptides that have been identified in several phyla. Recently, starfish myorelaxant peptide (SMP) was identified as a PP/OK-type neuropeptide in the starfish Patiria pectinifera (phylum Echinodermata). Furthermore, analysis of transcriptome sequence data from the starfish Asterias rubens revealed two PP/OK-type precursors: an SMP-type precursor (A.

View Article and Find Full Text PDF

Neuropeptides are an ancient class of neuronal signaling molecules that regulate a variety of physiological and behavioral processes in animals. The life cycle of many animals includes a larval stage(s) that precedes metamorphic transition to a reproductively active adult stage but, with the exception of and other insects, research on neuropeptide signaling has hitherto largely focused on adult animals. However, recent advances in genome/transcriptome sequencing have facilitated investigation of neuropeptide expression/function in the larvae of protostomian (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!