Measuring neuronal activity with electrophysiological methods may be useful in detecting neurological dysfunctions, such as mild traumatic brain injury (mTBI). This approach may be particularly valuable for rapid detection in at-risk populations including military service members and athletes. Electrophysiological methods, such as quantitative electroencephalography (qEEG) and recording event-related potentials (ERPs) may be promising; however, the field is nascent and significant controversy exists on the efficacy and accuracy of the approaches as diagnostic tools. For example, the specific measures derived from an electroencephalogram (EEG) that are most suitable as markers of dysfunction have not been clearly established. A study was conducted to summarize and evaluate the statistical rigor of evidence on the overall utility of qEEG as an mTBI detection tool. The analysis evaluated qEEG measures/parameters that may be most suitable as fieldable diagnostic tools, identified other types of EEG measures and analysis methods of promise, recommended specific measures and analysis methods for further development as mTBI detection tools, identified research gaps in the field, and recommended future research and development thrust areas. The qEEG study group formed the following conclusions: (1) Individual qEEG measures provide limited diagnostic utility for mTBI. However, many measures can be important features of qEEG discriminant functions, which do show significant promise as mTBI detection tools. (2) ERPs offer utility in mTBI detection. In fact, evidence indicates that ERPs can identify abnormalities in cases where EEGs alone are non-disclosing. (3) The standard mathematical procedures used in the characterization of mTBI EEGs should be expanded to incorporate newer methods of analysis including non-linear dynamical analysis, complexity measures, analysis of causal interactions, graph theory, and information dynamics. (4) Reports of high specificity in qEEG evaluations of TBI must be interpreted with care. High specificities have been reported in carefully constructed clinical studies in which healthy controls were compared against a carefully selected TBI population. The published literature indicates, however, that similar abnormalities in qEEG measures are observed in other neuropsychiatric disorders. While it may be possible to distinguish a clinical patient from a healthy control participant with this technology, these measures are unlikely to discriminate between, for example, major depressive disorder, bipolar disorder, or TBI. The specificities observed in these clinical studies may well be lost in real world clinical practice. (5) The absence of specificity does not preclude clinical utility. The possibility of use as a longitudinal measure of treatment response remains. However, efficacy as a longitudinal clinical measure does require acceptable test-retest reliability. To date, very few test-retest reliability studies have been published with qEEG data obtained from TBI patients or from healthy controls. This is a particular concern because high variability is a known characteristic of the injured central nervous system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4316720PMC
http://dx.doi.org/10.3389/fnhum.2015.00011DOI Listing

Publication Analysis

Top Keywords

mtbi detection
16
electrophysiological methods
12
measures analysis
12
qeeg
9
traumatic brain
8
brain injury
8
diagnostic tools
8
measures
8
specific measures
8
tools identified
8

Similar Publications

Primary blast exposure is a predominant cause of mild traumatic brain injury (mTBI) among veterans and active-duty military personnel, and affected individuals may develop long-lasting behavioral disturbances that interfere with quality of life. Our prior research with the "Missouri Blast" model demonstrated behavioral changes relevant to deficits in cognitive and affective domains after exposure to low-intensity blast (LIB). In this study, behavioral evaluations were extended to 3 months post-LIB injury using multifaceted conventional and advanced behavioral paradigms.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is frequently associated with hypopituitarism. The hypothalamic-pituitary axis appears to be susceptible to the same forces that cause injury to the parenchyma of the brain. Following even a mild TBI (mTBI), patients may suffer transient or permanent decreases in anterior pituitary hormones, including somatotropin (growth hormone [GH]), gonadotropins (luteinizing hormone and follicle-stimulating hormone), thyrotropin, and adrenocorticotropic hormone, with the most frequent long-term deficiency being GH deficiency (GHD).

View Article and Find Full Text PDF

Predicting chronic post-traumatic head and neck pain: the role of bedside parameters.

Pain

September 2024

Department of Neurology, Rambam Health Care Campus, Haifa, Israel.

Traumatic brain injury (TBI) annually impacts 69 million individuals worldwide. Mild TBI constitutes approximately 90% of all TBIs. Chronic pain post-mTBI occurs in 29% to 58% of patients.

View Article and Find Full Text PDF

Purpose: Mild Traumatic brain injury is classified based on Glasgow Coma Scale (GCS 13-15), it also involves transient alteration of brain function, which may lead to severe short- and long-term sequelae. When treating a patient with a mild head injury outside the hospital, it is of crucial importance to decide whether to transport him to a center without neurosurgery or to a center equipped with neurosurgery (primary centralization). Recent decades have seen exploration of portable, non-invasive devices for intracranial injury and stroke detection, with microwave frequency electromagnetic field technology showing promising clinical outcomes.

View Article and Find Full Text PDF

Background: The assessment of technology in hospital settings is a crucial step towards ensuring the delivery of efficient, effective, and safe healthcare.

Objective: This study conducts a Hospital-Based Health Technology Assessment to evaluate the efficacy of a screening rapid test for mild Traumatic Brain Injury (mild TBI) utilizing blood biomarkers, specifically Glial Fibrillary Acidic Protein (GFAP) and Ubiquitin C-terminal Hydrolase L1 (UCH-L1). The assessment focuses on the clinical utility and performance characteristics of the proposed rapid test within a hospital setting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!