Patterns of myeloarchitecture in lower limb amputees: an MRI study.

Front Neurosci

Medical Physics and Applied Radiation Sciences, McMaster University Hamilton, ON, Canada.

Published: February 2015

Functional studies of cortical plasticity in humans suggest that the motor cortex reorganizes when the descending motor output pathway is disrupted as a result of limb amputation. The question thus arises if the underlying anatomical organization of the motor cortex is also altered in limb amputation. Owing to challenges involved in imaging the thin cerebral cortex in vivo, there is limited data available on the anatomical or morphological plasticity of the motor cortex in amputation. In this paper, we study the morphology of the primary motor cortex in four lower limb amputees with 37 or more years of amputation and four age and gender-matched controls using 0.7 mm isotropic, T1-weighted MRI optimized to produce enhanced intracortical contrast based on myelin content. We segment the cortex into myelinated and unmyelinated gray matter. We determine the myelinated thickness which is the thickness of the well-myelinated tissue in the deeper layers of the cortex. We compare the bilateral differences in the myelinated thickness between amputees and controls. We also compare bilateral differences in cortical thickness between the two groups. Our measurements show no statistically significant difference between the amputees and controls in the myelinated thickness and in cortical thickness, in the region of the primary motor cortex representing the lower leg.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4318335PMC
http://dx.doi.org/10.3389/fnins.2015.00015DOI Listing

Publication Analysis

Top Keywords

motor cortex
20
myelinated thickness
12
lower limb
8
limb amputees
8
cortex
8
limb amputation
8
primary motor
8
compare bilateral
8
bilateral differences
8
amputees controls
8

Similar Publications

Proton magnetic resonance spectroscopy (MRS) offers a non-invasive, repeatable, and reproducible method for in vivo metabolite profiling of the brain and other tissues. However, metabolite fingerprinting by MRS requires high signal-to-noise ratios for accurate metabolite quantification, which has traditionally been limited to large volumes of interest, compromising spatial fidelity. In this study, we introduce a new optimized pipeline that combines LASER MRS acquisition at 11.

View Article and Find Full Text PDF

Objective: Our primary objective was to evaluate the safety and feasibility of transcranial direct current stimulation combined with exercise therapy for the treatment of cervicogenic headache. Our exploratory objectives compared symptoms of headache, mood, pain, and quality of life between active and sham transcranial direct stimulation combined with exercise therapy.

Background: Cervicogenic headache arises from injury to the cervical spine or degenerative diseases impacting cervical spine structure resulting in pain, reduced quality of life, and impaired function.

View Article and Find Full Text PDF

The manner in which neural activity unfolds over time is thought to be central to sensory, motor and cognitive functions in the brain. Network models have long posited that the brain's computations involve time courses of activity that are shaped by the underlying network. A prediction from this view is that the activity time courses should be difficult to violate.

View Article and Find Full Text PDF

Bipolar disorder (BD) involves altered reward processing and decision-making, with inconsistencies across studies. Here, we integrated hierarchical Bayesian modelling with magnetoencephalography (MEG) to characterise maladaptive belief updating in this condition. First, we determined if previously reported increased learning rates in BD stem from a heightened expectation of environmental changes.

View Article and Find Full Text PDF

Objective: Creating an intracortical brain-computer interface (iBCI) capable of seamless transitions between tasks and contexts would greatly enhance user experience. However, the nonlinearity in neural activity presents challenges to computing a global iBCI decoder. We aimed to develop a method that differs from a globally optimized decoder to address this issue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!