This study explores how people represent spatial information in order to accomplish a visuo-motor task. To this aim we combined two fundamental components of the human visuo-spatial system: egocentric and allocentric frames of reference and coordinate and categorical spatial relations. Specifically, participants learned the position of three objects and then had to judge the distance (coordinate information) and the relation (categorical information) of a target object with respect to themselves (egocentric frame) or with respect to another object (allocentric frame). They gave spatial judgments by reaching and touching the exact position or the side previously occupied by the target object. The possible influence of stimuli characteristics (3D objects vs. 2D images) and delay between learning phase and testing phase (1.5 vs. 5s) was also assessed. Results showed an advantage of egocentric coordinate judgments over the allocentric coordinate ones independently from the kind of stimuli used and the temporal parameters of the response, whereas egocentric categorical judgments were more accurate than allocentric categorical ones only with 3D stimuli and when an immediate response was requested. This pattern of data is discussed in the light of the "perception-action" model by Milner and Goodale [13] and of neuroimaging evidence about frames of reference and spatial relations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2015.02.021DOI Listing

Publication Analysis

Top Keywords

spatial relations
12
coordinate categorical
8
categorical spatial
8
egocentric allocentric
8
stimuli characteristics
8
frames reference
8
target object
8
coordinate
5
spatial
5
egocentric
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!