Rehmannia glutinosa (Gaertn.) DC. polysaccharide ameliorates hyperglycemia, hyperlipemia and vascular inflammation in streptozotocin-induced diabetic mice.

J Ethnopharmacol

Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China. Electronic address:

Published: April 2015

Ethnopharmacological Relevance: Rehmannia glutinosa (Gaertn.) DC. (RG) has been widely used as traditional Chinese herbal medicine for treatment of diabetes and its complications. The polysaccharide fraction of RG has been proposed to possess hypoglycemic effect by intraperitoneal administration, however, the mechanisms responsible for the hypoglycemic effect of RG polysaccharide (RGP) remain poorly understood. Here we studied the anti-hyperglycemic and anti-hyperlipidemic effect of oral administration of a purified RGP and its underlying mechanisms in streptozotocin (STZ)-induced diabetic mice.

Materials And Methods: The preliminary structure of RGP was determined by GC and FT-IR. Mice were injected with STZ to induce type 1 diabetes. RGP at doses of 20, 40 and 80 mg/kg/day was orally administered to mice for 4 weeks, and metformin was used as positive control. After 4 weeks, the blood biochemical parameters, the pancreatic insulin contents, in vitro insulin secretion, the hepatic glycogen contents and mRNA expression of phosphoenolpyruvate carboxyl kinase (PEPCK) were assayed.

Results: RGP was composed of rhamnose, arabinose, mannose, glucose and galactose in the molar ratio of 1.00:1.26:0.73:16.45:30.40 with the average molecular weight of 63.5 kDa. RGP administration significantly decreased the blood levels of glucose, total cholesterol, triglycerides, low density lipoprotein-cholesterol, and increased the blood levels of high density lipoprotein-cholesterol and insulin in diabetic mice, concurrent with increases in body weights and pancreatic insulin contents. The in vitro study revealed that RGP significantly enhanced both basal and glucose-stimulated insulin secretions, as well as islet insulin contents in the pancreatic islets of diabetic mice. Moreover, RGP reversed the increased mRNA expression of PEPCK and the reduced glycogen contents in the liver of diabetic mice. Furthermore, RGP exhibited potent anti-inflammatory and anti-oxidative activities, as evidenced by the decreased blood levels of TNF-α, IL-6, monocyte chemoattractant protein-1, MDA, and also the elevated blood levels of SOD and GPx activities in diabetic mice.

Conclusions: Taken together, RGP can effectively ameliorate hyperglycemia, hyperlipemia, vascular inflammation and oxidative stress in STZ-induced diabetic mice, and thus may be a potential therapeutic option for type 1 diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2015.02.026DOI Listing

Publication Analysis

Top Keywords

diabetic mice
20
blood levels
16
insulin contents
12
rgp
10
rehmannia glutinosa
8
glutinosa gaertn
8
hyperglycemia hyperlipemia
8
hyperlipemia vascular
8
vascular inflammation
8
stz-induced diabetic
8

Similar Publications

Male infertility is a common complication of diabetes. Diabetes leads to the decrease of zinc (Zn) content, which is a necessary trace element to maintain the normal structure and function of reproductive organs and spermatogenesis. The purpose of this study was to investigate the effect of metformin combined with zinc on testis and sperm in diabetic mice.

View Article and Find Full Text PDF

Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.

View Article and Find Full Text PDF

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

Role of transforming growth factor-β1 in regulating adipocyte progenitors.

Sci Rep

January 2025

Research Center for Pre-Disease Science, Faculty of Education and Research Promotion, University of Toyama, Toyama, 930-0194, Japan.

Adipose tissue (AT) metabolism involves coordinating various cells and cellular processes to regulate energy storage, release, and overall metabolic homeostasis. Therein, macrophage and its cytokine are important in controlling tissue homeostasis. Among cytokines, the role of transforming growth factor-β1 (Tgf-β1), a cytokine abundantly expressed in CD206 M2-like macrophage and correlated with the expansion of AT and fibrosis, in AT metabolism, remains unknown.

View Article and Find Full Text PDF

Nr4a1 and Nr4a3 redundantly control clonal deletion and contribute to an anergy-like transcriptome in auto-reactive thymocytes to impose tolerance in mice.

Nat Commun

January 2025

Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, CA, 94143, USA.

The Nr4a nuclear hormone receptors are transcriptionally upregulated in response to antigen recognition by the T cell receptor (TCR) in the thymus and are implicated in clonal deletion, but the mechanisms by which they operate are not clear. Moreover, their role in central tolerance is obscured by redundancy among the Nr4a family members and by their reported functions in Treg generation and maintenance. Here we take advantage of competitive bone marrow chimeras and the OT-II/RIPmOVA model to show that Nr4a1 and Nr4a3 are essential for the upregulation of Bcl2l11/BIM and thymic clonal deletion by self-antigen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!