Evaluating anthropogenic N inputs to diverse lake basins: A case study of three Chinese lakes.

Ambio

College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China.

Published: November 2015

The environmental degradation of lakes in China has become increasingly serious over the last 30 years and eutrophication resulting from enhanced nutrient inputs is considered a top threat. In this study, a quasi-mass balance method, net anthropogenic N inputs (NANI), was introduced to assess the human influence on N input into three typical Chinese lake basins. The resultant NANI exceeded 10,000 kg N km(-2) year(-1) for all three basins, and mineral fertilizers were generally the largest sources. However, rapid urbanization and shrinking agricultural production capability may significantly increase N inputs from food and feed imports. Higher percentages of NANI were observed to be exported at urban river outlets, suggesting the acceleration of NANI transfer to rivers by urbanization. Over the last decade, the N inputs have declined in the basins dominated by the fertilizer use but have increased in the basins dominated by the food and feed import. In the foreseeable future, urban areas may arise as new hotspots for nitrogen in China while fertilizer use may decline in importance in areas of high population density.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4591232PMC
http://dx.doi.org/10.1007/s13280-015-0638-8DOI Listing

Publication Analysis

Top Keywords

anthropogenic inputs
8
lake basins
8
food feed
8
basins dominated
8
inputs
5
basins
5
evaluating anthropogenic
4
inputs diverse
4
diverse lake
4
basins case
4

Similar Publications

An integrated understanding of dissolved phosphorous (DP) export mechanism and controls on export over dry and wet periods is crucial for riverine ecological restorations in dammed river basins considering its high bioavailability and retention rates at dams. Riverine DP transport patterns (composition, sources, and transport pathways), export controls, and fate were investigated over the 2020 wet season (5 events) and dry seasons before and after it (2 events: dry and dry) in a semi-arid, small-dammed watershed to comprehend the links between terrestrial DP sources and aquatic DP sinks. Close spatiotemporal monitoring of the full range of phosphorous and total suspended solids (TSSs) and subsequent analyses (hysteresis, hierarchical partitioning, and coefficient of variation) provided the basis for the study.

View Article and Find Full Text PDF

Influence of precipitation and temperature variability on anthropogenic nutrient inputs in a river watershed: Implications for environmental management.

J Environ Manage

January 2025

Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China; State Key Laboratory of Wetland Conservation and Restoration, School of Environment, Beijing Normal University, Beijing, 100875, China; Key Laboratory of Coastal Water Environmental Management and Water Ecological Restoration of Guang-dong Higher Education Institutes, Beijing Normal University, Zhuhai, 519087, China.

Article Synopsis
  • Since the Industrial Revolution, human activities have greatly increased nitrogen and phosphorus levels in river watersheds, especially influenced by climate change.
  • This study focused on the Dawen River Watershed in China from 2000 to 2021, analyzing the Net Anthropogenic Nitrogen Input (NANI) and Net Anthropogenic Phosphorus Input (NAPI) to assess their response to climate factors.
  • The findings indicated a decreasing trend in nitrogen input and a fluctuating trend for phosphorus, primarily driven by fertilizer use, while precipitation positively correlated with nutrient inputs and temperature had mixed effects.
View Article and Find Full Text PDF

This study evaluates the distribution and sources of thermogenic organic matter in the Baltic Sea water column, focusing on polycyclic aromatic hydrocarbons (PAH), dissolved black carbon (DBC), and the imprint of thermogenic organic matter on the dissolved organic matter (DOM) pool. The spatial patterns and complex interactions between land-based and atmospheric sources were assessed from Kiel Bay to Pomeranian Bight within the water column with the combined targeted and untargeted approaches. The findings emphasize the significant influence of terrestrial inputs from the Oder River and autochthonous production composing DOM.

View Article and Find Full Text PDF

The Gangetic Plain, one of the world's most fertile regions, is vital to food and water security in densely populated areas. However, metal contamination in sediments and water poses significant challenges, owing to intensified industrial and agricultural activities and periodic flooding. The ecological risks imposed by metals in the Middle Gangetic Plain remain underexplored because of limited data on their bioavailability across varying sediment depths.

View Article and Find Full Text PDF

Influences of fluctuating nutrient loadings on nitrate-reducing microorganisms in rivers.

ISME Commun

January 2025

Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.

Rivers serve important functions for human society and are significantly impacted by anthropogenic nutrient inputs (e.g. organic and sulfur compounds).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!