Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Motivation: Cytochrome P450s are a family of enzymes responsible for the metabolism of approximately 90% of FDA-approved drugs. Medicinal chemists often want to know which atoms of a molecule-its metabolized sites-are oxidized by Cytochrome P450s in order to modify their metabolism. Consequently, there are several methods that use literature-derived, atom-resolution data to train models that can predict a molecule's sites of metabolism. There is, however, much more data available at a lower resolution, where the exact site of metabolism is not known, but the region of the molecule that is oxidized is known. Until now, no site-of-metabolism models made use of region-resolution data.
Results: Here, we describe XenoSite-Region, the first reported method for training site-of-metabolism models with region-resolution data. Our approach uses the Expectation Maximization algorithm to train a site-of-metabolism model. Region-resolution metabolism data was simulated from a large site-of-metabolism dataset, containing 2000 molecules with 3400 metabolized and 30 000 un-metabolized sites and covering nine Cytochrome P450 isozymes. When training on the same molecules (but with only region-level information), we find that this approach yields models almost as accurate as models trained with atom-resolution data. Moreover, we find that atom-resolution trained models are more accurate when also trained with region-resolution data from additional molecules. Our approach, therefore, opens up a way to extend the applicable domain of site-of-metabolism models into larger regions of chemical space. This meets a critical need in drug development by tapping into underutilized data commonly available in most large drug companies.
Availability And Implementation: The algorithm, data and a web server are available at http://swami.wustl.edu/xregion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/btv100 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!