A key regulator of cellular senescence, mTORC1 complex, is the target of many signaling cascades including Ras/Raf/MEK/ERK-signaling cascade. In this paper we investigated the role of MEK/ERK-branch of this cascade in the process of cellular senescence induced by histone deacetylase inhibitor (HDACI) sodium butyrate (NaBut), in transformed rat embryo fibroblasts. Suppression of MEK/ERK activity by inhibitor PD0325901 does not prevent activation of mTORC1 complex induced by NaBut treatment. After the suppression of MEK/ERK, activity of mTORC1 increased as well as complex mTORC2. Activation of mTOR-containing complexes accompanied by the reorganization of the actin cytoskeleton with the formation of actin stress fibers and the appearance of some markers of cellular senescence. In contrast to NaBut-induced senescence accumulation of proteins was not observed, which may be due to increased activity of the degradation processes. Furthermore, the induction of senescence in conditions suppressed MEK/ERK leads to a drastic decrease in cell viability. Thus, NaBut-induced senescence upon suppressed activity of MEK/ERK-branch of MAP kinase cascade has a more pronounced tumor-suppressor effect associated with stronger activation of both mTOR-complexes, reorganization of the actin cytoskeleton and protein degradation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cellular senescence
12
transformed rat
8
rat embryo
8
mtorc1 complex
8
suppression mek/erk
8
mek/erk activity
8
reorganization actin
8
actin cytoskeleton
8
nabut-induced senescence
8
senescence
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!