Regulation of immune responses to protein therapeutics by transplacental induction of T cell tolerance.

Sci Transl Med

INSERM, U1138, F-75006 Paris, France. Centre de Recherche des Cordeliers (CRC), Equipe - Immunopathology and Therapeutic Immunointervention, F-75006 Paris, France. Sorbonne Universités, Université Pierre et Marie Curie (UPMC)-Paris 6, UMR S 1138 and UMR S CR7, F-75006 Paris, France. Laboratoire International Associé IMPACT (INSERM, France-Indian Council of Medical Research, India), F-75006 Paris, France.

Published: February 2015

Central tolerance plays a key role in modulating immune responses to self and exogenous antigens. The absence of self-antigen expression, as in patients with genetic deficiencies, prevents the development of antigen-specific immune tolerance. Hence, a substantial number of patients develop neutralizing antibodies to the corresponding protein therapeutics after replacement treatment. In this context, the administration of missing antigens during fetal development, a key period for self-tolerance establishment, should confer early and long-lasting antigen-specific tolerance. To this end, we exploited the physiological pathway of the neonatal Fc receptor (FcRn) through which maternal immunoglobulins are transplacentally transferred to fetuses. We demonstrate that Fc-fused antigens administered to pregnant mice reach fetal lymphoid organs in an FcRn-dependent manner, accumulate in antigen-presenting cells of myeloid origin, and promote the generation of both thymic and peripheral antigen-specific regulatory T cells. This strategy was successfully pursued in a mouse model of hemophilia A, where maternofetal transfer of the Fc-fused immunodominant domains of coagulation factor VIII conferred antigen-specific tolerance. Transplacental tolerance induction with Fc-fused proteins may thus prove valuable to prevent alloimmunization after replacement protein therapy for congenital deficiencies.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.aaa1957DOI Listing

Publication Analysis

Top Keywords

immune responses
8
protein therapeutics
8
antigen-specific tolerance
8
tolerance
6
regulation immune
4
responses protein
4
therapeutics transplacental
4
transplacental induction
4
induction cell
4
cell tolerance
4

Similar Publications

Assembly and functional mechanisms of plant NLR resistosomes.

Curr Opin Struct Biol

January 2025

School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China. Electronic address:

Nucleotide-binding and leucine-rich repeat (NLR) proteins are essential intracellular immune receptors in both animal and plant kingdoms. Sensing of pathogen-derived signals induces oligomerization of NLR proteins, culminating in the formation of higher-order protein complexes known as resistosomes in plants. The NLR resistosomes play a pivotal role in mediating the plant immune response against invading pathogens.

View Article and Find Full Text PDF

Glycobiology of psoriasis: A review.

J Autoimmun

January 2025

Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, No.38, Xueyuan Road, Haidian, Beijing, 100191, China. Electronic address:

Psoriasis is a chronic inflammatory skin disease with etiologies related to genetics, immunity, and the environment. It is characterized by excessive proliferation of keratinocytes and infiltration of inflammatory immune cells. Glycosylation is a post-translational modification of proteins that plays important roles in cell adhesion, signal transduction, and immune cell activation.

View Article and Find Full Text PDF

The mosquito evolves two types of prophenoloxidases with diversified functions.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan 570228, China.

Insect phenoloxidase, presented as an inactive precursor prophenoloxidase (PPO) in hemolymph, catalyzes melanin formation, which is involved in wound healing, pathogen killing, reversible oxygen collection during insect respiration, and cuticle and eggshell formation. Mosquitoes possess 9 to 16 PPO members across different genera, a number that is more than that found in other dipteran insects. However, the reasons for the redundancy of these PPOs and whether they have distinct biochemical properties and physiological functions remain unclear.

View Article and Find Full Text PDF

Nutritional status being the first line of defense for host plants, determines their susceptibility or resistance against invading pathogens. In recent years, the applications of plant nutrient related products have been documented as one of the best performers and considered as alternatives or/and supplements in plant disease management compared to traditional chemicals. However, knowledge about application of plant nutrient related products for the management of destructive fungal pathogen Fusarium oxysporum f.

View Article and Find Full Text PDF

Directed Evolution of Multicyclic Peptides Using Yeast Display for Sensitive and Selective Fluorescent Analysis of CD28 on the Cell Surface.

Anal Chem

January 2025

The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

CD28 is a costimulatory receptor that provides the second signal necessary for T-cell activation and is associated with diseases, including rheumatoid arthritis, asthma, and cancer. Targeting CD28 is crucial for both functional bioanalysis and therapeutic development. Molecular probes, particularly fluorescent probes, can enhance our understanding of CD28's cellular roles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!