AI Article Synopsis

  • VEGF blockers treated proliferative diabetic retinopathy (PDR), a major cause of vision loss, but may face challenges due to other factors causing resistance.
  • A new compound, K5-N,OS(H), effectively inhibits VEGF-related angiogenesis and acts on multiple proangiogenic factors beyond VEGF itself.
  • K5-N,OS(H) shows promise as a multi-target antiangiogenic therapy for managing pathological blood vessel growth in the retinas of PDR patients.

Article Abstract

Vascular endothelial growth factor (VEGF) blockers have been developed for the treatment of proliferative diabetic retinopathy (PDR), the leading cause of visual impairments in the working-age population in the Western world. However, limitations to anti-VEGF therapies may exist because of the local production of other proangiogenic factors that may cause resistance to anti-VEGF interventions. Thus, novel therapeutic approaches targeting additional pathways are required. Here, we identified a sulfated derivative of the Escherichia coli polysaccharide K5 [K5-N,OS(H)] as a multitarget molecule highly effective in inhibiting VEGF-driven angiogenic responses in different in vitro, ex vivo, and in vivo assays, including a murine model of oxygen-induced retinopathy. Furthermore, K5-N,OS(H) binds a variety of heparin-binding angiogenic factors upregulated in PDR vitreous humor besides VEGF, thus inhibiting their biological activity. Finally, K5-N,OS(H) hampers the angiogenic activity exerted in vitro and in vivo by human vitreous fluid samples collected from patients with PDR. Together, the data provide compelling experimental evidence that K5-N,OS(H) represents an antiangiogenic multitarget molecule with potential implications for the therapy of pathologic neovessel formation in the retina of patients with PDR.

Download full-text PDF

Source
http://dx.doi.org/10.2337/db14-1378DOI Listing

Publication Analysis

Top Keywords

coli polysaccharide
8
diabetic retinopathy
8
multitarget molecule
8
vitro vivo
8
patients pdr
8
therapeutic potential
4
potential anti-angiogenic
4
anti-angiogenic multitarget
4
multitarget no-sulfated
4
no-sulfated coli
4

Similar Publications

Virus Association with Bacteria and Bacterial Cell Components Enhance Virus Infectivity.

Food Environ Virol

January 2025

Division of Agriculture, Department of Food Science, University of Arkansas, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA.

The transmission and infection of enteric viruses can be influenced by co-existing bacteria within the environment and host. However, the viral binding ligands on bacteria and the underlying interaction mechanisms remain unclear. This study characterized the association of norovirus surrogate Tulane virus (TuV) and murine norovirus (MNV) as well as the human enteric virus Aichi virus (AiV) with six bacteria strains (Pantoea agglomerans, Pantoea ananatis, Bacillus cereus, Enterobacter cloacae, Exiguobacterium sibiricum, Pseudomonas spp.

View Article and Find Full Text PDF

Calcium alginate reinforced zwitterionic double network hydrogel with mechanical robustness and antimicrobial activity for freshwater shrimp spoilage detection.

Food Res Int

January 2025

Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, Guangdong Province, China. Electronic address:

Hydrogel indicators promise to monitor food spoilage, but their poor mechanics can cause defects in transport. Herein, a novel zwitterionic double network (DN) hydrogel was developed by polymerizing arylamide and sulfobetaine methacrylate in an alginate-Ca system. This hydrogel exhibited enhanced mechanical properties, including a maximum 2087 % breaking elongation and 135 ± 12 kJ/m toughness, significantly outperforming the current zwitterionic DN hydrogels, which typically exhibit less than 1800 % breaking elongation, capable of supporting 150 g-136 times its own weight.

View Article and Find Full Text PDF

An antimicrobial and adhesive conductive chitosan quaternary ammonium salt hydrogel dressing for combined electrical stimulation and photothermal treatment to promote wound healing.

Carbohydr Polym

March 2025

Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Material Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:

The aim of this study is to investigate the effect of the adhesive, conductive hydrogel on wound healing when used as a therapeutic dressing. Herein, a dressing of PVA/QCS/TP@Fe (PQTF) was designed and prepared integrating polyvinyl alcohol (PVA), chitosan quaternary ammonium salt (QCS), tea polyphenol (TP), and ferric ions (Fe) by a simple one-pot and freeze-thaw method. In view of the comprehensive properties of PQTF hydrogel, including adhesion, electrical conductivity, and swelling performance, PQTF was selected for subsequent in vitro and in vivo healing promotion studies.

View Article and Find Full Text PDF

A self-elastic chitosan sponge reinforced with lauric acid-modified quaternized chitosan and attapulgite to treat noncompressible hemorrhage and facilitate wound healing.

Carbohydr Polym

March 2025

Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China. Electronic address:

The development of self-elastic sponges with enhanced hemostatic and antibacterial properties to treat noncompressible hemorrhage and facilitate wound healing remains challenging. Herein, we prepared a chitosan sponge reinforced with lauric acid-modified quaternized chitosan (LQC) and attapulgite, features a porous structure, high self-elasticity, and rapid shape recovery. The incorporation of LQC conferred the sponge with an enhanced capacity to promote the adhesion, aggregation, and activation of blood cells, and resistance to infection by Staphylococcus aureus, Escherichia coli, and Methicillin-resistant Staphylococcus aureus; the incorporation of attapulgite enhanced the hydrophilicity and mechanical strength of the sponge, and its ability to activate the intrinsic and extrinsic coagulation pathways.

View Article and Find Full Text PDF

In situ growth of defective ZIF-8 on TEMPO-oxidized cellulose nanofibrils for rapid response release of curcumin in food preservation.

Carbohydr Polym

March 2025

Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Uncontrolled release of active agents in active packaging reduces antimicrobial efficacy, hindering the effective protection of perishable products from microbial infection. Herein, a novel defective engineering was proposed to design defective and hollow ZIF-8 structures grown on TEMPO oxidized cellulose nanofibrils (TOCNFs) and use them as fast-reacting nanocarriers for loading and controlled release curcumin (Cur) in sodium alginate (SA) active packaging systems (CZT-Cur-SA). By employing stable chelation between tannic acid (TA) and ZIF-8 zinc ions, the connections between zinc ions and imidazole ligands were severed to form a loose and hollow structure, which facilitates the rapid reaction and release of active ingredients triggered by pH changes in the microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!