Serotonin (5-hydroxytryptamine, 5-HT) neurons from the mouse and rat rostral medulla are stimulated by increased CO2 when studied in culture or brain slices. However, the response of 5-HT neurons has been variable when animals are exposed to hypercapnia in vivo. Here we examined whether halogenated inhalational anesthetics, which activate TWIK-related acid-sensitive K(+) (TASK) channels, could mask an effect of CO2 on 5-HT neurons. During in vivo plethysmography in mice, isoflurane (1%) markedly reduced the hypercapnic ventilatory response (HCVR) by 78-96% depending upon mouse strain and ambient temperature. In a perfused rat brain stem preparation, isoflurane (1%) reduced or silenced spontaneous firing of medullary 5-HT neurons in situ and abolished their responses to elevated perfusate Pco2. In dissociated cell cultures, isoflurane (1%) hyperpolarized 5-HT neurons by 6.52 ± 3.94 mV and inhibited spontaneous firing. A subsequent decrease in pH from 7.4 to 7.2 depolarized neurons by 4.07 ± 2.10 mV, but that was insufficient to reach threshold for firing. Depolarizing current restored baseline firing and the firing frequency response to acidosis, indicating that isoflurane did not block the underlying mechanisms mediating chemosensitivity. These results demonstrate that isoflurane masks 5-HT neuron chemosensitivity in vitro and in situ and markedly decreases the HCVR in vivo. The use of this class of anesthetic has a particularly potent inhibitory effect on chemosensitivity of 5-HT neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4416618 | PMC |
http://dx.doi.org/10.1152/jn.01073.2014 | DOI Listing |
Expert Opin Ther Pat
January 2025
Department of Pharmaceutical and Biomedical Sciences, Rudolph H. Raabe College of Pharmacy, Ohio Northern University, Ada, OH, USA.
Introduction: Opioids have served as a cornerstone in pain management for decades. However, the emergence of increasingly potent synthetic analogs brings forth a range of side effects, including respiratory depression, tolerance, dependence, constipation, and, more importantly, the development of severe and debilitating opioid use disorder (OUD). Search for therapeutics to mitigate OUD has been challenging and this has called for novel approaches that include design of small molecules targeting neuronal circuits involved in addiction (opioid, dopamine, serotonin, norepinephrine, and glutamate receptors, etc.
View Article and Find Full Text PDFBrain Res Bull
January 2025
Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, China; Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China. Electronic address:
Depression is commonly associated with gastrointestinal (GI) disorders, such as constipation, which can potentially intensify depressive symptoms. The interplay between these conditions is believed to be facilitated by the gut-brain axis, which suggests a complex bidirectional interaction. Current treatments, such as antidepressants and prokinetics, are often associated with side effects and high recurrence rates, highlighting the need for effective treatments targeting both depression and constipation.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Department of Pharmacology, University of Oxford, Oxford, UK.
Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China.
The primary cilia serve as pivotal mediators of environmental signals and play crucial roles in neuronal responses. Disruption of ciliary function has been implicated in neuronal circuit disorders and aberrant neuronal excitability. However, the precise mechanisms remain elusive.
View Article and Find Full Text PDFThere is growing interest to investigate classic psychedelics as potential therapeutics for mental illnesses. Previous studies have demonstrated that one dose of psilocybin leads to persisting neural and behavioral changes. The durability of psilocybin's effects suggests that there are likely alterations of gene expression at the transcriptional level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!