Isoflurane abolishes spontaneous firing of serotonin neurons and masks their pH/CO₂ chemosensitivity.

J Neurophysiol

Department of Neurology and NIH/NINDS Center for SUDEP Research, University of Iowa Hospitals and Clinics, Iowa City, Iowa; Department of Molecular Physiology and Biophysics, University of Iowa Hospitals and Clinics, Iowa City, Iowa; and Department of Veterans Affairs Medical Center, Iowa City, Iowa.

Published: April 2015

Serotonin (5-hydroxytryptamine, 5-HT) neurons from the mouse and rat rostral medulla are stimulated by increased CO2 when studied in culture or brain slices. However, the response of 5-HT neurons has been variable when animals are exposed to hypercapnia in vivo. Here we examined whether halogenated inhalational anesthetics, which activate TWIK-related acid-sensitive K(+) (TASK) channels, could mask an effect of CO2 on 5-HT neurons. During in vivo plethysmography in mice, isoflurane (1%) markedly reduced the hypercapnic ventilatory response (HCVR) by 78-96% depending upon mouse strain and ambient temperature. In a perfused rat brain stem preparation, isoflurane (1%) reduced or silenced spontaneous firing of medullary 5-HT neurons in situ and abolished their responses to elevated perfusate Pco2. In dissociated cell cultures, isoflurane (1%) hyperpolarized 5-HT neurons by 6.52 ± 3.94 mV and inhibited spontaneous firing. A subsequent decrease in pH from 7.4 to 7.2 depolarized neurons by 4.07 ± 2.10 mV, but that was insufficient to reach threshold for firing. Depolarizing current restored baseline firing and the firing frequency response to acidosis, indicating that isoflurane did not block the underlying mechanisms mediating chemosensitivity. These results demonstrate that isoflurane masks 5-HT neuron chemosensitivity in vitro and in situ and markedly decreases the HCVR in vivo. The use of this class of anesthetic has a particularly potent inhibitory effect on chemosensitivity of 5-HT neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4416618PMC
http://dx.doi.org/10.1152/jn.01073.2014DOI Listing

Publication Analysis

Top Keywords

5-ht neurons
24
spontaneous firing
12
neurons
8
5-ht
7
isoflurane
6
firing
6
isoflurane abolishes
4
abolishes spontaneous
4
firing serotonin
4
serotonin neurons
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!