Electric field effects on the intermolecular interactions in water whiskers: insight from structures, energetics, and properties.

J Phys Chem A

State Key Laboratory of Theoretical and Computational Chemistry Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China.

Published: March 2015

Modulation of intermolecular interactions in response to external electric fields could be fundamental to the formation of unusual forms of water, such as water whiskers. However, a detailed understanding of the nature of intermolecular interactions in such systems is lacking. In this paper, we present novel theoretical results based on electron correlation calculations regarding the nature of H-bonds in water whiskers, which is revealed by studying their evolution under external electric fields with various field strengths. We find that the water whiskers consisting of 2-7 water molecules all have a chain-length dependent critical electric field. Under the critical electric field, the most compact chain structures are obtained, featuring very strong H-bonds, herein referred to as covalent H-bonds. In the case of a water dimer whisker, the bond length of the novel covalent H-bond shortens by 25%, the covalent bond order increases by 9 times, and accordingly the H-bond energy is strengthened by 5 times compared to the normal H-bond in a (H2O)2 cluster. Below the critical electric field, it is observed that, with increasing field strength, H-bonding orbitals display gradual evolutions in the orbital energy, orbital ordering, and orbital nature (i.e., from typical π-style orbital to unusual σ-style double H-bonding orbital). We also show that, beyond the critical electric field, a single water whisker may disintegrate to form a loosely bound zwitterionic chain due to a relay-style proton transfer, whereas two water whiskers may undergo intermolecular cross-linking to form a quasi-two-dimensional water network. Overall, these results help shed new insight on the effects of electric fields on water whisker formation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp511460cDOI Listing

Publication Analysis

Top Keywords

electric field
20
water whiskers
20
critical electric
16
intermolecular interactions
12
electric fields
12
water
11
electric
8
external electric
8
water whisker
8
field
6

Similar Publications

High spin-orbit torque efficiency induced by engineering spin absorption for fully electric-driven magnetization switching.

Mater Horiz

January 2025

School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China.

Realizing spin-orbit torque (SOT)-driven magnetization switching offers promising opportunities for the advancement of next-generation spintronics. However, the relatively low charge-spin conversion efficiency accompanied by an ultrahigh critical switching current density () remains a significant obstacle to the further development of SOT-based storage elements. Herein, spin absorption engineering at the ferromagnet/nonmagnet interface is firstly proposed to achieve high SOT efficiency in Pt/Co/Ir trilayers.

View Article and Find Full Text PDF

Electroacupuncture (EA) is one of the most commonly used methods in acupuncture and has a good effect on pain, depression, sensory movement disorders, and other diseases. The effectiveness of EA is influenced by many factors, such as the accuracy of acupoint selection, the duration and course of EA treatment, and EA parameters. However, it has rarely been discussed whether the positive and negative electrodes of the EA instrument with acupoints at different locations and distances have an effect on the curative effect.

View Article and Find Full Text PDF

The widespread use of gadolinium-based contrast agents for magnetic resonance imaging (MRI) in recent decades has led to a growing demand for Gd and raised environmental concerns due to their direct discharge into wastewater systems. In response, we developed an electrochemical filtration method to recover Gd from patient urine following contrast-enhanced MRI. This method involves modifying a conventional vacuum filtration apparatus by introducing electrodes into the filter membrane, creating a strong electric field of ∼5 kV/m and a steep three-zone pH gradient within the filter membrane.

View Article and Find Full Text PDF

Two-dimensional (2D) organic-inorganic halide perovskites are promising sensitive materials for optoelectronic applications due to their strong light-matter interactions, layered structure, long carrier lifetime and diffusion length. However, a high gate bias is indispensable for perovskite-based phototransistors to optimize detection performances, since ion migration seriously screens the gate electric field and the deposition process introduces intrinsic defects, which induces severe leakages and large power dissipation. In this work, an ultrasensitive phototransistor based on the (PEA)SnI perovskite and the Al:HfO ferroelectric layer is meticulously studied, working without an external gate voltage.

View Article and Find Full Text PDF

Ammonium perchlorate (AP) is widely utilized in aerospace, defense and other fields due to its high energy density, exceptional stability, easy availability and adaptability. However, the high sensitivity and hygroscopicity of AP severely constrain its application in numerous fields. In this study, a two-step continuous coating method was employed to construct AP-based energetic microcapsules with low sensitivity and hygroscopicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!