Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography.

Quant Imaging Med Surg

1 Department of Bioengineering, 2 Beckman Institute for Advanced Science and Technology, 3 Department of Electrical and Computer Engineering, 4 Department of Internal Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

Published: February 2015

Background: Otitis media (OM), an infection in the middle ear, is extremely common in the pediatric population. Current gold-standard methods for diagnosis include otoscopy for visualizing the surface features of the tympanic membrane (TM) and making qualitative assessments to determine middle ear content. OM typically presents as an acute infection, but can progress to chronic OM, and after numerous infections and antibiotic treatments over the course of many months, this disease is often treated by surgically inserting small tubes in the TM to relieve pressure, enable drainage, and provide aeration to the middle ear. Diagnosis and monitoring of OM is critical for successful management, but remains largely qualitative.

Methods: We have developed an optical coherence tomography (OCT) system for high-resolution, depth-resolved, cross-sectional imaging of the TM and middle ear content, and for the quantitative assessment of in vivo TM thickness including the presence or absence of a middle ear biofilm. A novel algorithm was developed and demonstrated for automatic, real-time, and accurate measurement of TM thickness to aid in the diagnosis and monitoring of OM and other middle ear conditions. The segmentation algorithm applies a Hough transform to the OCT image data to determine the boundaries of the TM to calculate thickness.

Results: The use of OCT and this segmentation algorithm is demonstrated first on layered phantoms and then during real-time acquisition of in vivo OCT from humans. For the layered phantoms, measured thicknesses varied by approximately 5 µm over time in the presence of large axial and rotational motion. In vivo data also demonstrated differences in thicknesses both spatially on a single TM, and across normal, acute, and chronic OM cases.

Conclusions: Real-time segmentation and thickness measurements of image data from both healthy subjects and those with acute and chronic OM demonstrate the use of OCT and this algorithm as a robust, quantitative, and accurate method for use during real-time in vivo human imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312285PMC
http://dx.doi.org/10.3978/j.issn.2223-4292.2014.11.32DOI Listing

Publication Analysis

Top Keywords

middle ear
24
vivo human
8
tympanic membrane
8
optical coherence
8
coherence tomography
8
ear content
8
diagnosis monitoring
8
segmentation algorithm
8
image data
8
layered phantoms
8

Similar Publications

Dynamic X-ray Microtomography vs. Laser-Doppler Vibrometry: A Comparative Study.

J Assoc Res Otolaryngol

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010, Freiburgstrasse, Bern, Switzerland.

Purpose: There are challenges in understanding the biomechanics of the human middle ear, and established methods for studying this system show significant limitations. In this study, we evaluate a novel dynamic imaging technique based on synchrotron X-ray microtomography designed to assess the biomechanical properties of the human middle ear by comparing it to laser-Doppler vibrometry (LDV).

Methods: We examined three fresh-frozen temporal bones (TB), two donated by white males and one by a Black female, using dynamic synchrotron-based X-ray microtomography for 256 and 512 Hz, stimulated at 110 dB and 120 dB sound pressure level (SPL).

View Article and Find Full Text PDF

Background: Otitis media with effusion (OME) is associated with comorbidities such as allergic rhinitis, gastroesophageal reflux disease, asthma, and more. Many of these comorbidities can be caused by type 2 inflammation (T2I). This study aims to determine the risk of undergoing OME surgery in patients with and without T2I disease.

View Article and Find Full Text PDF

Revisiting Age-Related Normative Hearing Levels in Korea.

J Korean Med Sci

January 2025

Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Hanyang University, Seoul, Korea.

Background: Hearing level reference values based on the results of recent audiometry have not been established for the general population of South Korea. This study aimed to evaluate the mean hearing levels of each age group and to measure the annual progression of hearing loss.

Methods: We used the database of the eighth and ninth Korea National Health and Nutrition Examination Survey from 2020 to 2022, and included participants with normal tympanic membranes and without occupational noise exposure.

View Article and Find Full Text PDF

This study aimed to investigate the topological properties of brain functional networks in patients with tinnitus of varying durations. A total of 51 tinnitus patients (divided into recent-onset tinnitus (ROT) and persistent tinnitus (PT) groups) and 27 healthy controls (HC) were recruited. All participants underwent resting-state functional MRI and audiological assessments.

View Article and Find Full Text PDF

Postoperative Hearing Outcomes and Usefulness of Endoscopy-Assisted Tympanoplasty in Pars Tensa Cholesteatoma.

Int Arch Otorhinolaryngol

January 2025

Department of Otorhinolaryngology. Head and Neck Surgery, National Defense Medical College, Saitama, Japan.

 In recent years, transcanal endoscopic ear surgery (TEES) has gained widespread recognition as an excellent surgical field for blind spots such as the sinus tympani (ST) when compared to microscopic ear surgery (MES).  To investigate the postoperative hearing results for pars tensa cholesteatoma and the indications for utilizing endoscopy.  The medical records of 16 patients (10 men and 6 women) with pars tensa cholesteatoma, who received initial surgical treatment between 2018 and 2022, were reviewed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!