Males of the advanced salamanders (Salamandroidea) attain internal fertilization without a copulatory organ by depositing a spermatophore on the substrate in the environment, which females subsequently take up with their cloaca. The aquatically reproducing modern Eurasian newts (Salamandridae) have taken this to extremes, because most species do not display close physical contact during courtship, but instead largely rely on females following the male track at spermatophore deposition. Although pheromones have been widely assumed to represent an important aspect of male courtship, molecules able to induce the female following behaviour that is the prelude for successful insemination have not yet been identified. Here, we show that uncleaved sodefrin precursor-like factor (SPF) protein pheromones are sufficient to elicit such behaviour in female palmate newts (Lissotriton helveticus). Combined transcriptomic and proteomic evidence shows that males simultaneously tail-fan multiple ca 20 kDa glycosylated SPF proteins during courtship. Notably, molecular dating estimates show that the diversification of these proteins already started in the late Palaeozoic, about 300 million years ago. Our study thus not only extends the use of uncleaved SPF proteins outside terrestrially reproducing plethodontid salamanders, but also reveals one of the oldest vertebrate pheromone systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4345460PMC
http://dx.doi.org/10.1098/rspb.2014.2960DOI Listing

Publication Analysis

Top Keywords

late palaeozoic
8
spf proteins
8
side-by-side secretion
4
secretion late
4
palaeozoic diverged
4
courtship
4
diverged courtship
4
courtship pheromones
4
pheromones aquatic
4
aquatic salamander
4

Similar Publications

Trilobite cephalic shape disparity varied through geological time and was integral to their ecological niche diversity, and so is widely used for taxonomic assignments. To fully appreciate trilobite cephalic evolution, we must understand how this disparity varies and the factors responsible. We explore trilobite cephalic disparity using a dataset of 983 cephalon outlines of c.

View Article and Find Full Text PDF

Current hypotheses of early tetrapod evolution posit close ecological and biogeographic ties to the extensive coal-producing wetlands of the Carboniferous palaeoequator with rapid replacement of archaic tetrapod groups by relatives of modern amniotes and lissamphibians in the late Carboniferous (about 307 million years ago). These hypotheses draw on a tetrapod fossil record that is almost entirely restricted to palaeoequatorial Pangea (Laurussia). Here we describe a new giant stem tetrapod, Gaiasia jennyae, from high-palaeolatitude (about 55° S) early Permian-aged (about 280 million years ago) deposits in Namibia that challenges this scenario.

View Article and Find Full Text PDF

Terrestrial ecosystems evolved substantially through the Palaeozoic, especially the Permian, gaining much new complexity, especially among predators. Key among these predators were non-mammalian synapsids. Predator ecomorphology reflect interactions with prey and competitors, which are key controls on carnivore diversity and ecology.

View Article and Find Full Text PDF

Colonial green algae in the Cambrian plankton.

Proc Biol Sci

October 2023

Centre for Palaeobiology and Biosphere Evolution, School of Geography, Geology and the Environment, University of Leicester, University Road, Leicester LE1 7RH, UK.

The fossil record indicates a major turnover in marine phytoplankton across the Ediacaran-Cambrian transition, coincident with the rise of animal-rich ecosystems. However, the diversity, affinities and ecologies of Cambrian phytoplankton are poorly understood, leaving unclear the role of animal interactions and the drivers of diversification. New exceptionally preserved acritarchs (problematic organic-walled microfossils) from the late early Cambrian (around 510 Ma) reveal colonial organization characterized by rings and plates of interconnected, geometrically arranged cells.

View Article and Find Full Text PDF

The fossil record of freshwater Gastropoda - a global review.

Biol Rev Camb Philos Soc

February 2024

Department of Animal Ecology and Systematics, Justus Liebig University, Heinrich-Buff-Ring 26 (iFZ), Giessen, 35392, Germany.

Gastropoda are an exceptionally successful group with a rich and diverse fossil record. They have conquered land and freshwater habitats multiple times independently and have dispersed across the entire globe. Since they are important constituents of fossil assemblages, they are often used for palaeoecological reconstruction, biostratigraphic correlations, and as model groups to study morphological and taxonomic evolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!